

IGCSE (Syllabus 0580) MATHEMATICS Paper 2 (Extended) - All Variants (Topical)

Appointed Agents & Wholesalers in PAKISTAN:

BOOK LAND Urdu Bazaar, Lahore. Tel: 042-37124656

NATIONAL BOOK SERVICE Urdu Bazaar, Lahore. Tel: 042-37247310.

LAROSH BOOKS Urdu Bazaar Lahore. Tel: 042-37312126.

BURHANI BOOK CENTRE New Urdu Bazar, Karachi, Tel: 021-32634718

MARYAM ACADEMY Urdu Bazaar, Karachi, Tel: 0331-2425264

TARIQ BOOK TOWN

Samar Garden, Hydari North nazimzbad, Karachi. Tel: 021-34555918, 36649425

REHMAN BOOKS

College Road, Rawalpindi Tel: 051-5770603, 0313-5618976

WELCOME BOOKS

Soneri Masjid Road, Peshawar Cantt. Tel: 091-5274932, 0300-5860068

🛱 period	2018 to June-2024
C contents	June & November, Paper 2 (P21, P22 & P23) Worked Solutions
form	Торіс Ву Торіс
for	IGCSE

© REDSPOT PUBLISHING

${f O}$ Tel No :	042-35201010
Ĵ Mobile No∶	0300-8447654
🖆 🗐 Mail 🗄	info@redspot.com.pk
🚎 Website :	www.redspot.pk
🗗 Address :	P.O. Box 5041, Model Town, Lahore, Pakistan.
	Lanure, Farislan.

All rights reserved. No part of this publication may be reproduced, copied or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher/ distributor.

IGCSE Mathematics 0580 Paper 2 Extended (P21, P22 & P23)

Topic 1	Numbers
Topic 2	Standard Form
Topic 3	Estimation
Topic 4	Limits of Accuracy
Topic 5	Time, Temperature
Topic 6	Ratio & Proportion, Rates
Topic 7	Percentages
Topic 8	Money
Topic 9	Simple Interest & Compound Interest
Topic 10	Sets Language and Notation
Topic 11	Indices
Topic 12	Algebraic Manipulation
Topic 13	Algebraic Fractions
Topic 14	Solutions of Equations
Topic 15	Inequalities
Topic 16	Sequences and Patterns
Topic 17	Proportion
Topic 18	Graphs in Practical Situations
Topic 19	Graphs of Functions
Topic 20	Differentiation
Topic 20	Differentiation

IGCSE Mathematics 0580 Paper 2 Extended (P21, P22 & P23)

Topic 21	Function Notation
Topic 22	Coordinate Geometry
Topic 23	Geometrical Constructions & Scale Drawings
Topic 24	Similarity
Topic 25	Symmetry
Topic 26	Angle Properties, Polygons
Topic 27	Circle Theorems
Topic 28	Mensuration
Topic 29	Trigonometry and Bearings
Topic 30	Transformations
Topic 31	Vectors in Two Dimensions
Topic 32	Probability
Topic 33	Statistics - Categorical, Numerical and Grouped data
Topic 34	Statistics - Statistical Diagrams

TOPIC 1 -

Numbers

1. Calculate.

$$\frac{5.38 - 0.98}{0.743 - 0.343}$$

.....[1]

[Nov/2018/P23/Q4][Note: Question is modified to solve without a calculator]

2. Without using a calculator, work out $\frac{1}{4} \div \frac{2}{3}$.

You must show all your working and give your answer as a fraction.

.....[2] [Nov/2018/P23/Q9]

3. Change the recurring decimal 0.18 to a fraction. You must show all your working.

.....[2] [Nov/2018/P23/Q13]

4. Calculate $\sqrt[3]{8.2^2 - 3.24}$

[June/2019/P21/Q3][Note: Question is modified to solve without a calculator]

5. Write the recurring decimal 0.47 as a fraction. Show all your working.

								[2]
								[June/2019/P21/Q9]
6.		27	28	29	30	31	32	33
	From the list of n	umbers,	write dov	vn				
	(a) a multiple of	7,						
	(b) a cube numb	er						
		U 1,						[1]
	(c) a prime numb	ber.						[1]
								[1]
								[June/2019/P21/Q12]

7. Work out $\frac{5}{6} + \frac{2}{3}$. You must show all your working and give your answer as a mixed number in its simplest form.

[3] *[June/2019/P21/Q14]*

8. Write down a prime number between 50 and 60.

.....[1] [June/2019/P22/Q1]

9. Write the recurring decimal 0.7 as a fraction.

.....[1] [June/2019/P22/Q3] 10. Find the highest common factor (HCF) of 90 and 48.

 ••••		••••		[2]
[Jur	ne/2	019	/P22/	Q9]

11. Work out $2\frac{1}{4} \div \frac{3}{7}$. You must show all your working and give your answer as a mixed number in its simplest form.

							[3]
							[June/2019/P22/Q13]
12. Calculate.							
(a) $-12 \div -2$							
(,							[1]
(b) $\sqrt[3]{2^4 + 11}$							
		[June/	/2019/P23/Q	[6] [Note:	Part (b) is r	nodified to	[1] o solve without a calculator]
13. Here is a list	of num	pers.					
	21	$\frac{2}{3}$	$\sqrt{13}$	31	$\sqrt{121}$	51	0.7
From this list,	write d	own					
(a) a prime m	umber,						
· · · -							[1]
(b) an irration	al numl	ber.					
							[1]
							[June/2019/P23/Q7]

14. Work out $\frac{12}{35} \times \frac{7}{9}$. You must show all your working and give your answer as a fraction in its simplest form.

.....[2] [June/2019/P23/Q9]

ANSWERS

Topic 1 - Numbers

- 1. $\frac{5.38 0.98}{0.743 0.343}$ $= \frac{4.4}{0.4} \times \frac{10}{10}$ $= \frac{44}{4} = 11$
- 2. $\frac{1}{4} \div \frac{2}{3}$ = $\frac{1}{4} \times \frac{3}{2} = \frac{3}{8}$
- 3. Let $x = 0.1\dot{8}$ $\Rightarrow x = 0.188888$ Multiply by 10, $\Rightarrow 10x = 1.88888 \dots (1)$ Multiply by 100, $\Rightarrow 100x = 18.8888 \dots (2)$ Subtract (1) from (2) $100x = 18.8888 \dots (2)$ $100x = 1.88888 \dots (2)$ 90x = 17 $\Rightarrow x = \frac{17}{90}$
- 4. $\sqrt[3]{8.2^2 3.24}$ = $\sqrt[3]{67.24 - 3.24}$ = $\sqrt[3]{64}$ = $\sqrt[3]{4^3}$ = 4
- 5. Let $x = 0.4\dot{7}$ $\Rightarrow x = 0.477777$ Multiply by 10, $\Rightarrow 10x = 4.77777....$ (1) Multiply by 100, $\Rightarrow 100x = 47.77777....$ (2) Subtract (1) from (2) 100x = 47.77777.... 10x = 4.77777.... 90x = 43 $\Rightarrow x = \frac{43}{90}$

- 6. (a) Multiple of 7 = 28
 - **(b)** Cube number = 27
 - (c) Prime number = 29 or 31
- 7. $\frac{5}{6} + \frac{2}{3}$ = $\frac{5+4}{6}$ = $\frac{9}{6} = \frac{3}{2} = 1\frac{1}{2}$ 8. 53 or 59
- 9. Let $x = 0.\dot{7}$ $\Rightarrow x = 0.77777....$ (1) $\Rightarrow 10x = 7.77777....$ (2) Subtract (1) from (2) 10x = 7.77777.... x = 0.77777.... 9x = 7 $\Rightarrow x = \frac{7}{9}$
- 10. $90 = 2 \times 3 \times 3 \times 5$ $48 = 2 \times 2 \times 2 \times 2 \times 3$ \therefore HCF = $2 \times 3 = 6$
- 11. $2\frac{1}{4} \div \frac{3}{7}$ = $\frac{9}{4} \times \frac{7}{3}$ = $\frac{21}{4} = 5\frac{1}{4}$
- **12.** (a) $-12 \div -2$ $=\frac{-12}{-2}=6$
 - **(b)** $\sqrt[3]{2^4 + 11}$ = $\sqrt[3]{16 + 11}$ = $\sqrt[3]{27}$ = $\sqrt[3]{3^3}$ = 3
- **13. (a)** Prime number = 31 or $\sqrt{121}$
 - **(b)** Irrational number = $\sqrt{13}$

- TOPIC 14 –

Solutions of Equations

1. Solve the equation. 9f + 11 = 3f + 23

2. Solve the simultaneous equations. You must show all your working.

$$5x + 8y = 4$$
$$\frac{1}{2}x + 3y = 7$$

x = y =[3] [June/2019/P22/Q14]

3. Rearrange this formula to make m the subject.

$$P = \frac{k+m}{m}$$

.....[4] [June/2019/P22/Q19] 4. Rearrange 2(w+h) = P to make w the subject.

 $w = \dots [2]$ [June/2019/P23/Q10]

5. Complete this statement with an expression in terms of m.

$$18m^3 + 9m^2 + 14m + 7 = (9m^2 + 7)(\dots)$$

[2] [June/2019/P23/Q11]

6. One solution of the equation ax² + a = 150 is x = 7.
(a) Find the value of a.

 $a = \dots [2]$

(b) Find the other solution.

 $x = \dots [1]$ [June/2019/P23/Q14] 7. Solve. $\frac{x-2}{3} = 3$

 $x = \dots [2]$ [Nov/2019/P21/Q6]

8. $P = 2r + \pi r$

Rearrange the formula to write r in terms of P and π .

 $r = \dots$ [2] [Nov/2019/P21/Q11]

9. y = mx + c

Find the value of y when m = -3, x = -2 and c = -8.

y =[2][June/2020/P22/Q5]

10. Solve the equation. $\frac{1-x}{3} = 5$

 $x = \dots [2]$ [June/2020/P22/Q14]

11. Make y the subject of the formula, $h^2 = x^2 + 2y^2$

y =[3] [June/2020/P22/Q19] 12. (a) Write $x^2 - 18x - 40$ in the form $(x+k)^2 + h$.

......[2]

(b) Use your answer to part (a) to solve the equation $x^2 - 18x - 40 = 0$

 $x = \dots$ or $x = \dots$ [2] [June/2020/P23/Q18] [Note: Question is modified to solve without a calculator]

13. Make x the subject of this formula. 2y = 5x - 7

 $x = \dots [2]$ [Nov/2020/P21/Q7]

14. Solve the equation. 6-2x = 3x

15. Solve the simultaneous equations.

2x + y = 73x - y = 8

<i>x</i> =	
<i>y</i> =	
	[2]
	[Nov/2020/P22/Q9]

16. Solve the simultaneous equations. You must show all your working.

$$3x - 8y = 22$$
$$x + 4y = 4$$

$x = \dots$		•••••	•••••	
<i>y</i> = .		• • • • • • • •	•••••	
				[3]
	[No ⁻	v/202	0/P23/Q	210]

$$17. \qquad m = 2p + \sqrt{\frac{x}{y}}$$

Make x the subject of this formula.

ANSWERS

Topic 14 - Solutions of Equations

1. 9f + 11 = 3f + 239f - 3f = 23 - 11 $6f = 12 \implies f = \frac{12}{6} = 2$ **2.** 5x + 8y = 4(1) $\frac{1}{2}x + 3y = 7$ (2) Solving the equations simultaneously, eq. (1): 5x + 8y = 4eq. (2)×10: 5x + 30y = 70-22y = -66 $\Rightarrow \qquad y = \frac{-66}{-22} = 3$ Substitute y = 3 into eq. (1) 5x + 8(3) = 4 $\Rightarrow 5x + 24 = 4 \Rightarrow 5x = -20 \Rightarrow x = -4$ $\therefore x = -4, y = 3$ $P = \frac{k+m}{m}$ 3. Pm = k + mPm - m = km(P-1) = k $m = \frac{k}{P-1}$ 2(w+h) = P4. $w+h=\frac{P}{2} \implies w=\frac{P}{2}-h$ LHS = $18m^3 + 9m^2 + 14m + 7$ 5. $=18m^{3}+14m+9m^{2}+7$ $= 2m(9m^{2}+7)+1(9m^{2}+7)$ $=(9m^2+7)(2m+1)$ \therefore Required expression is, 2m+16. (a) $ax^2 + a = 150$ Substitute x = 7, $\Rightarrow a(7)^2 + a = 150$ $\Rightarrow 49a + a = 150$ $\Rightarrow 50a = 150 \Rightarrow a = \frac{150}{50} = 3$

(b) $ax^2 + a = 150$ Substitute a = 3. $\Rightarrow 3x^2 + 3 = 150$ $\Rightarrow 3x^2 = 147$ $\Rightarrow x^2 = \frac{147}{3}$ $\Rightarrow x^2 = 49 \Rightarrow x = \pm 7$ \therefore Other solution is, x = -77. $\frac{x-2}{3} = 3$ x - 2 = 9x = 9 + 2 = 118. $P = 2r + \pi r$ $\Rightarrow 2r + \pi r = P$ $\Rightarrow r(2+\pi) = P \Rightarrow r = \frac{P}{2+\pi}$ 9. v = mx + cy = (-3)(-2) + (-8)v = 6 - 8 = -210. $\frac{1-x}{3} = 5$ 1 - x = 15 $-x = 14 \implies x = -14$ 11. $h^2 = x^2 + 2v^2$ $\Rightarrow x^2 + 2y^2 = h^2$ $\Rightarrow 2v^2 = h^2 - x^2$ $\Rightarrow y^2 = \frac{h^2 - x^2}{2} \Rightarrow y = \pm \sqrt{\frac{h^2 - x^2}{2}}$ 12. (a) $x^2 - 18x - 40$ Applying completing the square method, $=x^{2}-2(x)(9)+(9)^{2}-(9)^{2}-40$ $=(x-9)^2-81-40$ $=(x-9)^2-121$

(b) $x^2 - 18x - 40 = 0$ $\Rightarrow (x-9)^2 - 121 = 0$ $\Rightarrow (x-9)^2 = 121$ $\Rightarrow x-9=\pm\sqrt{121}$ $\Rightarrow x-9=\pm 11$ \Rightarrow x-9=11 or x-9=-11 \therefore x = 20 or x = -2**13.** 2y = 5x - 7 $\Rightarrow 5x = 2y + 7 \Rightarrow x = \frac{2y + 7}{5}$ 14. 6 - 2x = 3x6 = 3x + 2x $6 = 5x \implies x = \frac{6}{5} = 1.2$ **15.** $2x + y = 7 \implies y = 7 - 2x$ (1) 3x - y = 8(2) Substitute eq. (1) into eq. (2), 3x - (7 - 2x) = 8 $\Rightarrow 3x - 7 + 2x = 8$ \Rightarrow 5*x* = 15 \Rightarrow *x* = 3 Substitute x = 3 into eq. (1), y = 7 - 2(3) = 1 \therefore x = 3, y = 1**16.** 3x - 8y = 22(1) $x + 4y = 4 \implies x = 4 - 4y \dots (2)$ Substitute eq. (2) into eq. (1), 3(4-4y)-8y=22 \Rightarrow 12-12y-8y = 22 $\Rightarrow -20y = 10 \Rightarrow y = \frac{10}{-20} = -\frac{1}{2}$ Substitute $y = -\frac{1}{2}$ into eq. (2), $x = 4 - 4\left(-\frac{1}{2}\right) \implies x = 4 + 2 = 6$ $\therefore x = 6, y = -\frac{1}{2}$ 17. $m = 2p + \sqrt{\frac{x}{v}}$ $\Rightarrow \sqrt{\frac{x}{v}} = m - 2p$ $\Rightarrow \frac{x}{v} = (m - 2p)^2$ $\Rightarrow x = y(m-2p)^2$

18. 2x + y = 3(1) x - 5y = 40(2) Solving the equations simultaneously, eq. (1) \times 5: 10x + 5y = 15 x - 5y = 40eq. (2): 11x = 55 $\Rightarrow x = \frac{55}{11} = 5$ Substitute x = 5 into eq. (1) $2(5) + y = 3 \implies 10 + y = 3 \implies y = -7$ \therefore x = 5, y = -7**19.** 2mh = g(1-h) $\Rightarrow 2mh = g - gh$ $\Rightarrow 2mh + gh = g$ $\Rightarrow h(2m+g) = g \Rightarrow h = \frac{g}{2m+g}$ **20.** $a = \frac{b^2}{5c}$ $\Rightarrow 4.9 = \frac{b^2}{5(2)}$ $\Rightarrow \frac{b^2}{10} = 4.9$ $\Rightarrow b^2 = 49$ $\Rightarrow b = \pm \sqrt{49} = \pm 7$ **21.** 4x - 2y = -13(1) -3x + 4y = 11(2) Solving the equations simultaneously, eq. (1) \times 2 : 8x - 4y = -26eq. (2): -3x + 4y = 115x = -15 $\Rightarrow x = \frac{-15}{5} = -3$ Substitute x = -3 into eq. (2) -3(-3) + 4y = 11 $\Rightarrow 9+4y=11 \Rightarrow 4y=2 \Rightarrow y=\frac{1}{2}$ $\therefore x = -3, y = \frac{1}{2}$ 22. $y = \frac{3x-2}{1-x}$ $\Rightarrow y(1-x) = 3x-2$ $\Rightarrow y - xy = 3x - 2$ $\Rightarrow y+2=3x+xy$ \Rightarrow y+2 = x(3+y) \Rightarrow x = $\frac{y+2}{3+y}$

- TOPIC 27 -

Circle Theorems

1. The diagram shows a circle, centre O.

AB is a chord of length 12 cm. M is the mid-point of AB and OM = 4 cm.

Calculate the radius of the circle. Give your answer in the form \sqrt{q} .

[June/2018/P22/Q16] [Note: Question is modified to solve without a calculator]

F

2. The points A, B, C, D and E lie on the circumference of the circle. Angle DCE = 47° and angle CEA = 85°. Find the values of w, x and y.

3. The diagram shows a circle, centre O.
AB and DE are chords of the circle.
M is the mid-point of AB and N is the mid-point of DE.
AB = DE = 9 cm and OM = 5 cm.
Find ON.

4. *A*, *B* and *C* are points on the circle, centre *O*. Find the obtuse angle *AOC*.

JL and KM intersect at N. Angle $JNK = 104^{\circ}$ and angle $MLJ = 22^{\circ}$.

Work out the value of d.

 $d = \dots$ [4] [June/2019/P23/Q19] 6. In the diagram, A, B, C and D lie on the circumference of a circle, centre O.

Angle $ACD = x^{\circ}$ and angle $OAB = 2x^{\circ}$.

Find an expression, in terms of x, in its simplest form for

(a) angle AOB,

(b) angle *ACB*,

(c) angle DAB.

Angle $ACB = \dots$ [1]

7. Points A, B, C, D, E and F lie on the circle, centre O.
Find the value of x and the value of y. [2]

8. P, R and Q are points on the circle.

AB is a tangent to the circle at *Q*. *QR* bisects angle *PQB*. Angle $BQR = x^{\circ}$ and x < 60.

Use this information to show that triangle PQR is an isosceles triangle. Give a geometrical reason for each step of your

work.

[3] [June/2020/P21/Q15]

Angle OAB = [1][June/2020/P22/Q20] 10. The diagram shows a cyclic quadrilateral.Find the value of *y*.

 $y = \dots$ [4] [Nov/2020/P21/Q20]

11. A, B and C are points on a circle, centre O. DA and DC are tangents. Angle $ADC = 44^{\circ}$.

Work out the value of x.

 $x = \dots$ [3] [June/2021/P22/Q13]

12. (a) P, Q and T are points on a circle. *ATB* is a tangent to the circle at T and PT = PQ. Find angle TPQ.

Angle $TPQ = \dots [2]$

ANSWERS

Topic 27 - Circle Theorems

- 1. $AM = \frac{12}{2} = 6 \text{ cm}$ In ΔOAM , using Pythagoras Theorem, $OA = \sqrt{OM^2 + AM^2}$ $\Rightarrow OA = \sqrt{4^2 + 6^2}$ $\Rightarrow OA = \sqrt{16 + 36} = \sqrt{52}$ \therefore Radius of the circle = $\sqrt{52}$ cm. 6. ABCE is a cyclic quadrilateral, 2. \therefore $w^{\circ} + 85^{\circ} = 180^{\circ}$ (opp. \angle s of a cyclic quad. are supplementary) $\Rightarrow w^{\circ} = 180^{\circ} - 85^{\circ}$ =95° ABCD is a cyclic quadrilateral, $\therefore x^{\circ} + w^{\circ} = 180^{\circ}$ $\Rightarrow x^{\circ} + 95^{\circ} = 180^{\circ}$ $\Rightarrow x^{\circ} = 180^{\circ} - 95^{\circ}$ = 85° $x^{\circ} + y^{\circ} + 47^{\circ} = 180^{\circ}$ (\angle sum of a triangle is 180°) $\Rightarrow 85^{\circ} + v^{\circ} + 47^{\circ} = 180^{\circ}$ $\Rightarrow y^{\circ} = 180^{\circ} - 132^{\circ}$ = 48° Note: x° can also be found as below. $\widehat{ADC} = \widehat{AEC}$ (angles in the same segment) $\Rightarrow x^{\circ} = 85^{\circ}$ $ON = 5 \,\mathrm{cm}$ (equal chords are equidistant 3. from centre). Reflex $A\widehat{O}C = 2(130^\circ) = 260^\circ$ 4. (\angle at centre is 2× \angle at circumference) \therefore Obtuse $A\widehat{O}C = 360^\circ - 260^\circ$ $=100^{\circ}$ 5. In ΔJML ,
 - $J\widehat{M}L = 90^{\circ}$ (right angle in semicircle) $\widehat{MJL} + 90^{\circ} + 22^{\circ} = 180^{\circ}$ (angle sum of a Δ is 180°) $\Rightarrow \widehat{MJL} = 180^{\circ} - 90^{\circ} - 22^{\circ}$ $\Rightarrow \widehat{MJL} = 68^{\circ}$

$$M\widehat{K}L = M\widehat{J}L \text{ (angles in the same segment)}$$

$$\Rightarrow M\widehat{K}L = 68^{\circ}$$
Now, in ΔKLN ,
 $d^{\circ} + 68^{\circ} = 104^{\circ}$ (ext. angle of $\Delta = \text{sum of}$
 $opp.$ interior angles)

$$\Rightarrow d^{\circ} = 104^{\circ} - 68^{\circ}$$

 $= 36^{\circ}$
(a) ΔOAB is isosceles with $OA = OB$ (radii of circle),
 $O\widehat{B}A = 2x^{\circ}$ (base angles of isosceles Δ)
 $\therefore A\widehat{O}B + 2x^{\circ} + 2x^{\circ} = 180^{\circ}$

$$\Rightarrow \hat{AOB} = 180^{\circ} - 4x^{\circ}$$

(b)
$$A\hat{C}B = \frac{1}{2}(A\hat{O}B)$$
 (\angle at centre is $2 \times \angle$ at
circumference)
 $\Rightarrow A\hat{C}B = \frac{1}{2}(180^\circ - 4x^\circ)$

$$=90^{\circ}-2x^{\circ}$$

(c)
$$D\hat{C}B = D\hat{C}A + A\hat{C}B$$

= $x^\circ + 90^\circ - 2x^\circ = 90^\circ - x^\circ$

ABCD is a cyclic quadrilateral

$$\Rightarrow D\widehat{A}B + D\widehat{C}B = 180^{\circ} \text{ (opp. } \angle \text{s of a cyclic} \\ \text{quad. add up to } 180^{\circ}\text{)}$$

$$\Rightarrow D\widehat{A}B + 90^{\circ} - x^{\circ} = 180^{\circ}$$
$$\Rightarrow D\widehat{A}B = 180^{\circ} - 90^{\circ} + x^{\circ}$$

$$= 90^{\circ} + x^{\circ}$$

Alternative Solution

$$D\widehat{B}A = D\widehat{C}A = x^{\circ}$$
 (angles in the same segment)

$$A\widehat{D}B = A\widehat{C}B$$
 (angles in the same segment)
= 90° - 2x°

$$\therefore \quad D\widehat{A}B + A\widehat{D}B + D\widehat{B}A = 180^{\circ} \ (\angle \text{ sum of a } \Delta)$$

$$\Rightarrow D\widehat{A}B + 90^{\circ} - 2x^{\circ} + x^{\circ} = 180^{\circ}$$

$$\Rightarrow D\widehat{A}B + 90^{\circ} - x^{\circ} = 180^{\circ}$$

$$\Rightarrow DAB = 180^{\circ} - 90^{\circ} + x^{\circ}$$
$$= 90^{\circ} + x^{\circ}$$

Topic 27 - Answers ⇒ Page 2

7.
$$x^{\circ} = \frac{110^{\circ}}{2}$$
 (\angle at centre is $2 \times \angle$ at circumference)
= 55°

 $y^{\circ} = 24^{\circ}$ (angles in the same segment)

8. Given that, QR bisects angle PQB,

$$\Rightarrow P\widehat{Q}R = B\widehat{Q}R = x^{\circ}$$

Also, $Q\hat{P}R = x^{\circ}$ (alternate segment theorem)

 $\therefore \Delta PQR$ has two equal angles.

Given that, $x^{\circ} < 60^{\circ}$, therefore the triangle is not an equilateral triangle.

Thus, ΔPQR is an isosceles triangle.

9. (a) *ABCD* is a cyclic quadrilateral Opposite angles of a cyclic quadrilateral are supplementary

$$ADC + 131^{\circ} = 180^{\circ}$$
$$A\widehat{D}C = 180^{\circ} - 131^{\circ}$$
$$= 49^{\circ}.$$

(b) $\widehat{AOC} = 2(\widehat{ADC})$ (\angle at centre is $2 \times \angle$ at circumference)

$$\Rightarrow AOC = 2(49^{\circ}) = 98^{\circ}.$$

...

(c) $B\hat{A}T = 20^{\circ}$ (alternate segment theorem)

(d)
$$O\hat{A}T = 90^{\circ}$$
 (radius \perp tangent)
 $\therefore \quad O\hat{A}B = 90^{\circ} - B\hat{A}T$
 $= 90^{\circ} - 20^{\circ}$
 $= 70^{\circ}$

- **10.** Opposite angles of a cyclic quadrilateral are supplementary.
 - $\therefore \quad 2x^\circ + x^\circ + 60^\circ = 180^\circ$

$$\Rightarrow 3x^{\circ} = 120^{\circ} \Rightarrow x^{\circ} = 40^{\circ}$$

Also,
$$y^{\circ} + 4x^{\circ} - 87^{\circ} = 180^{\circ}$$

 $\Rightarrow y^{\circ} + (4)(40^{\circ}) - 87^{\circ} = 180^{\circ}$
 $\Rightarrow y^{\circ} + 160^{\circ} - 87^{\circ} = 180^{\circ}$
 $\Rightarrow y^{\circ} + 73^{\circ} = 180^{\circ} \Rightarrow y^{\circ} = 180^{\circ} - 73^{\circ} = 107^{\circ}$

11.
$$O\hat{A}D = O\hat{C}D = 90^{\circ}$$
 (radius \perp tangent)
 $\therefore \quad A\hat{O}C = 180^{\circ} - 44^{\circ}$
 $= 136^{\circ}$
 $x^{\circ} = \frac{1}{2}(A\hat{O}C)$ (\angle at centre is $2 \times \angle$ at
circumference)
 $\Rightarrow \quad x^{\circ} = \frac{1}{2}(136^{\circ}) = 68^{\circ}$

12. (a)
$$P\hat{Q}T = 50^{\circ}$$
 (alternate segment theorem)
 ΔPQT is isosceles with $PT = PQ$
 $\Rightarrow P\hat{T}Q = P\hat{Q}T = 50^{\circ}$ (base \angle of isosceles Δ)
 $\therefore T\hat{P}Q = 180^{\circ} - 50^{\circ} - 50^{\circ}$
 $= 180^{\circ} - 100^{\circ}$
 $= 80^{\circ}$

(b) $w = 68^{\circ}$

Exterior angle of a cyclic quadrilateral is equal to the opposite interior angle

$$3x^{\circ} + 2x^{\circ} = 180^{\circ}$$
$$5x^{\circ} = 180^{\circ}$$
$$x^{\circ} = \frac{180^{\circ}}{5} = 36^{\circ}$$

Opposite angles of a cyclic quadrilateral are supplementary

- **13.** (a) $x = 55^{\circ}$ because, alternate segment theorem.
 - (b) Tangents drawn from an external point to a circle are equal in lengths. Therefore, SV = SR. Thus ΔSVR is isosceles.
- 14. $x^{\circ} = 38^{\circ}$ (alternate segment theorem)

$$ACB = x^{\circ} \quad \text{(alternate angles)}$$

$$A\widehat{B}C + 60^{\circ} = 180^{\circ} \quad \text{(opp. } \angle \text{s of a cyclic}$$

$$\text{quadrilateral add to } 180^{\circ}\text{)}$$

$$\Rightarrow \ A\widehat{B}C = 180^{\circ} - 60^{\circ} = 120^{\circ}$$

$$\text{In } \Delta ABC,$$

$$y^{\circ} + x^{\circ} + A\widehat{B}C = 180^{\circ} \quad \text{(angle sum of a } \Delta\text{)}$$

$$\Rightarrow \ y^{\circ} + 38^{\circ} + 120^{\circ} = 180^{\circ}$$

$$\Rightarrow \ y^{\circ} = 180^{\circ} - 38^{\circ} - 120^{\circ}$$

$$= 22^{\circ}$$

15. Diameter of circle = DE

Angle subtended by diameter at any point on the circumference is 90°. In ΔDEF , $D\hat{F}E = 180^{\circ} - 82^{\circ} - 8^{\circ} = 90^{\circ}$. Thus *DE* is the diameter.

TOPIC 28 -

Mensuration

1. Calculate the area of a circle with radius 5.1 cm. Give your answer in terms of π

[June/2018/P21/Q6] [Note: Question is modified to solve without a calculator]

 The diagram shows a solid cuboid with base area 7 cm². The volume of this cuboid is 21 cm³. Work out the total surface area.

..... cm² [3] [June/2018/P22/Q14]

3. Find the volume of a cylinder of radius 5 cm and height 8 cm. Give your answer in terms of π . Give the units of your answer.

.....[3]

[June/2018/P22/Q15] [Note: Question is modified to solve without a calculator]

4. A water tank in the shape of a cuboid has length 1.5 metres and width 1 metre. The water in the tank is 60 centimetres deep.

Calculate the number of litres of water in the tank.

7. The volume of a cuboid is 180 cm³. The base is a square of side length 6 cm. Calculate the height of this cuboid.

8. Calculate the area of this triangle.

9. The diagram shows a sector of a circle with radius 8 cm and sector angle 225°.

Calculate the area of this sector. Give your answer in terms of π .

G

Η

[June/2019/P23/Q12] [Note: Question is modified to solve without a calculator]

10. The diagram shows two regular pentagons.
Pentagon FGHJK is an enlargement of pentagon ABCDE, centre O.
(a) Find angle AEK.

(b) The area of pentagon FGHJK is 73.5 cm². The area of pentagon ABCDE is 6 cm².
Find the ratio perimeter of pentagon FGHJK : perimeter of pentagon ABCDE in its simplest form.

[Nov/2019/P21/Q17] [Note: Question is modified to solve without a calculator]

12. A pipe is completely full of water.Water flows through the pipe at a speed of 1.2 m/s into a tank. The cross-section of the pipe has an area of 6 cm².Calculate the number of litres of water flowing into the tank in 1 hour.

..... litres [4] [Nov/2019/P21/Q22] 13. A cuboid measures 5 cm by 7 cm by 9.5 cm.Work out the surface area of this cuboid.

14. A container is made from a cylinder and a cone, each of radius 5 cm. The height of the cylinder is 12 cm and the height of the cone is 4.8 cm. The cylinder is filled completely with water. The container is turned upside down as shown below. Calculate the depth, d, of the water. [Do all calculations in terms of π .] [The volume, V, of a cone with radius r and height h is $V = \frac{1}{3}\pi r^2 h$.]

 $d = \dots \quad \text{cm [5]}$ [Nov/2019/P23/Q22] [Note: Question is modified to solve without a calculator]

ANSWERS

Topic 28 - Mensuration

- 1. Area of circle = $\pi (5.1)^2$ = 26.01 π cm²
- 2. Let height of the cuboid be h cm. Volume of cuboid = 21 cm^3

$$\Rightarrow 7 \times 1 \times h = 21 \Rightarrow h = \frac{21}{7} = 3 \text{ cm}$$

- ... Total surface area = $2(7 \times 1) + 2(1 \times 3) + 2(7 \times 3)$ = $14 + 6 + 42 = 62 \text{ cm}^2$
- 3. Volume of cylinder = $\pi(5)^2(8)$ = $\pi(25)(8) = 200\pi \text{ cm}^3$
- 4. Depth of water = 60 cm = $\frac{60}{100}$ m = 0.6 m Volume of water in the tank = $1.5 \times 1 \times 0.6$ = 0.9 m³

1 m³ = 1000 litres ∴ Number of litres in the tank = 0.9×1000 = 900 litres

- 5. Radius of sector, AM = 6 cm $\triangle ABC$ is an equilateral triangle
 - $\therefore \quad C\widehat{A}B = 60^{\circ}$ Area of shaded region
 - = area of ΔABC area of sector AMN

$$= \frac{1}{2}(12)(12)\sin 60^{\circ} - \frac{60^{\circ}}{360^{\circ}} \times \pi(6)^{2}$$
$$= 72\left(\frac{\sqrt{3}}{2}\right) - \frac{1}{6} \times \pi(36)$$
$$= 36\sqrt{3} - 6\pi \text{ cm}^{2}$$

6. Perimeter of sector = 6 + 6 + arc length

$$= 6 + 6 + \frac{72^{\circ}}{360^{\circ}} \times 2\pi(6)$$

= 12 + $\frac{12}{5}\pi$
∴ $p = 12$, $q = \frac{12}{5}$

- 7. Let height of cuboid be h cm Volume of cuboid = $6 \times 6 \times h$ = 36h $\Rightarrow 36h = 180$ $\Rightarrow h = \frac{180}{36} = 5 \text{ cm}$ 8. Area of $\Delta = \frac{1}{2}(8.4)(3.5)$ = 14.7 cm^2
- 9. Area of sector $=\frac{225^{\circ}}{360^{\circ}} \times \pi(8)^2$ $=\frac{5}{8} \times \pi(64) = 40\pi \text{ cm}^2$
- 10. (a) One interior angle of pentagon = $\frac{(5-2) \times 180^{\circ}}{5}$ $3 \times 180^{\circ}$

$$=\frac{5\times10}{5}$$
$$=108^{\circ}$$

Reflex
$$\widehat{AED} = 360^{\circ} - 108^{\circ}$$

= 252°
 $\therefore \quad \widehat{AEK} = \frac{1}{2}(252^{\circ}) = 126^{\circ}$

 $\therefore \quad A\widehat{E}D = 108^{\circ}$

- **(b)** Area of *FGHJK* = $\left(\frac{\text{perimeter of } FGHJK}{\text{perimeter of } ABCDE}\right)^2$
 - $\Rightarrow \frac{73.5}{6} = \left(\frac{\text{perimeter of } FGHJK}{\text{perimeter of } ABCDE}\right)^2$
 - $\Rightarrow \frac{735}{60} = \left(\frac{\text{perimeter of } FGHJK}{\text{perimeter of } ABCDE}\right)^2$

$$\Rightarrow \frac{49}{4} = \left(\frac{\text{perimeter of } FGHJK}{\text{perimeter of } ABCDE}\right)^2$$

$$\Rightarrow \frac{\text{perimeter of } FGHJK}{\text{perimeter of } ABCDE} = \sqrt{\frac{49}{4}}$$

$$\Rightarrow \frac{\text{perimeter of } FGHJK}{\text{perimeter of } ABCDE} = \frac{7}{2}$$

 \therefore Required ratio = 7 : 2

11. Shaded area = Area of larger sector - area of smaller sector

$$= \frac{45^{\circ}}{360^{\circ}} \times \pi(5)^{2} - \frac{45^{\circ}}{360^{\circ}} \pi(3)^{2}$$
$$= \frac{1}{8} \times \pi(25) - \frac{1}{8} \pi(9)$$
$$= \frac{25}{8} \pi - \frac{9}{8} \pi$$
$$= \frac{16}{8} \pi = 2\pi \text{ cm}^{2}$$

12. Speed of flow of water = 1.2 m/s= $1.2 \times 100 = 120 \text{ cm/s}$

Volume of water that flows in one second

= area of cross section \times speed of flow

$$=6 \times 120 = 720 \text{ cm}^3/\text{s}$$

 \therefore Volume of water that flows in one hour

$$= 720 \times 60 \times 60$$

- $= 720 \times 3600$
- $= 2592000 \text{ cm}^3$
- = 2592000 ml = 2592 litres
- 13. Surface area = $2(9.5 \times 5) + 2(5 \times 7) + 2(7 \times 9.5)$ = $95 + 70 + 133 = 298 \text{ cm}^2$
- **14.** Volume of cylinder = Volume of water

$$= \pi (5)^2 (12)$$

= 300 π cm³

Volume of cone = $\frac{1}{3}\pi(5)^2(4.8) = 40\pi$ cm³ When the container is turned upside down,

volume of water in cylinder = $300\pi - 40\pi$ = 260π cm³

Let h cm be the depth of water in cylinder.

$$\therefore \quad \pi(5)^2 h = 260\pi$$
$$\Rightarrow \quad h = \frac{260\pi}{25\pi} \quad \Rightarrow \quad h = \frac{52}{5} = 10.4 \text{ cm}$$

: depth,
$$d = 10.4 + 4.8 = 15.2 \text{ cm}$$

- 16. Area of trapezium $=\frac{1}{2}(7+11)(5)$ $=\frac{1}{2}(18)(5) = 45 \text{ cm}^2$
- 17. Let θ be the angle of the sector

Length of arc
$$PQ = \frac{\theta}{360} \times 2\pi(7)$$

 $\Rightarrow 5.5 = \frac{\theta}{360^{\circ}} \times 2 \times \frac{22}{7} \times 7$
 $\Rightarrow 5.5 = \frac{\theta}{360^{\circ}} \times 44$
 $\Rightarrow 5.5 = \frac{11}{90}\theta \Rightarrow \theta = 5.5 \times \frac{90}{11} = 45^{\circ}$
Now, Area of sector $= \frac{45^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 7^{2}$
 $= \frac{1}{8} \times 22 \times 7$
 $= \frac{77}{4} = 19.25 \text{ cm}^{2}$

- **18.** Volume of cuboid = $8 \times 4 \times 6.5$ = 208 cm³
- **19.** 60 mm = 6 cm

: Area of sector =
$$\frac{42^{\circ}}{360^{\circ}} \times \pi(6)^2$$

= $\frac{42^{\circ}}{360^{\circ}} \times \pi(36) = 4.2 \pi \text{ cm}^2$

- 20. Total surface area of cylinder = 2(area of circle) + curved surface area = $2(\pi(3)^2) + 2\pi(3)(4.5)$ = $18\pi + 27\pi = 45\pi$ cm²
- 21. Area of triangle = 27 cm² $\Rightarrow \frac{1}{6}(6)(h) = 27$

$$\Rightarrow 2^{(0)(h) - 2}$$
$$\Rightarrow 3h = 27 \Rightarrow h = 9 \text{ cm}$$

22. Total surface area of the solid = area of circular base

+ curved surface area of cylinder + area of hemisphere

$$= \pi (7)^{2} + 2\pi (7)(12) + \frac{1}{2} \left(4\pi (7)^{2} \right)$$
$$= 49\pi + 168\pi + 98\pi$$
$$= 315\pi \text{ cm}^{2}$$