C

GCE 'O' Level Mathematics (Topical)

Syllabus	
Topic 1	Numbers
Topic 1a	Everyday Mathematics
Topic 2	Indices and Standard Form
Topic 3	Inequalities
Topic 4	Algebraic Expressions and Manipulations
Topic 4a	Variations
Topic 5	Solutions of Equations and Simultaneous Equations
Topic 6	Co-ordinate Geometry
Topic 7	Graphs of Functions and Graphical Solutions
Topic 8	Graphs in Practical Situations and Travel Graphs
Topic 9	Similarity and Congruency
Topic 10	Mensuration
Topic 11	Symmetry
Topic 12	Loci and Constructions
Topic 13	Angles and Circle Properties
Topic 14	Trigonometry
Topic 15	Bearings
Topic 16	Probability
Topic 17	Transformation
Topic 18	Vectors in Two Dimensions

- Topic 19 Statistics
- Topic 20 Sets and Venn Diagrams
- Topic 21 Matrices Topic 22 Functions
- Topic 23 Problem-Solving and Patterns

Revision

- June 2007 Paper 1 & 2 December **2007** Paper 1 & 2
- June 2008 Paper 1 & 2 December **2008** Paper 1 & 2
- June 2009 Paper 1 & 2 December **2009** Paper 1 & 2

Topic 4

Algebraic Expressions and Manipulations

1 (J96/P1/Q14)

Questions are not shown in Preview

Question 1

Thinking Process

- (a) use $a^2 b^2 = (a b)(a + b)$.
- (b) To factorise the expression find the common factor of the first two terms and the common factor of the last two terms.

Solution

(a)
$$16-9x^2 = 4^2 - (3x)^2$$

= $(4-3x)(4+3x)$ **Ans.**

(b)
$$6ab - 2ad - 3bc + cd = 2a(3b - d) - c(3b - d)$$

= $(2a - c)(3b - d)$ **Ans.**

2 (D96/P1/Q3)

Questions are not shown in Preview

Question 2

To find the sum in terms of $x \not > f$ find an expression for each of the two even numbers in terms of x.

Solution

......
$$x$$
, $x+1$, $x+2$, $x+3$, \uparrow \uparrow \uparrow odd even odd even

sum of next two even numbers =(x+1)+(x+3)= 2x+4 **Ans.**

3 (D96/P2/Q2)

Questions are not shown in Preview

Question 3

Thinking Process

- (c) (i) To calculate the total cost in (i) 🎉 calculate the variable charge.
 - (ii) To find a formula for C in terms of n
 for follow the steps in (i).
 - (iii) To find the greatest number of words Arthur can use \mathscr{L} solve the inequality C < 300.

Solution with TEACHER'S COMMENTS

(a)
$$2p-5=4-3(p+2)$$

 $2p-5=4-3p-6$
 $5p=4-6+5$
 $=3$
 $p=\frac{3}{5}$ **Ans.**

b)
$$y = \frac{A+2x}{x}$$

$$= \frac{A}{x} + 2$$

$$\frac{A}{x} = y - 2$$

$$\frac{x}{A} = \frac{1}{y-2}$$

$$x = \frac{A}{y-2}$$
Ans.

Alternatively, you can do it this way:
$$y = \frac{A+2x}{x}$$

$$xy = A+2x$$

$$xy - 2x = A$$

$$x(y-2) = A$$

$$x = \frac{A}{y-2}$$

(c) (i) Fixed charge = 50 cents Variable charge = 15×11 cents = 165 cents Total cost = 50 + 165 cents

= 215 cents **Ans.**

(ii) Fixed charge = 50 cents Variable charge = $15 \times n$ cents = 15n cents

Total cost, C = 50 + 15n cents **Ans.**

(iii)
$$C < 300$$

 $50 + 15n < 300$
 $15n < 250$
 $n < 16.7$

 \therefore the greatest number of words = 16 **Ans.**

4 (J97/P1/Q18)

Questions are not shown in Preview

Question 4

Thinking Process

- (a) \mathscr{J} Apply the formula $a^2 b^2 = (a b)(a + b) \mathscr{J}$ take out the common factor.
- (b) # Use inspection on coefficients.

Solution

with TEACHER'S COMMENTS

(a)
$$5-45t^2$$

= $5(1-9t^2)$
= $5[1^2-(3t)^2]$
= $5(1-3t)(1+3t)$

Important to note that $1 = 1^2$ and $9t^2 = (3t)^2$ and then apply $a^2 - b^2 = (a - b)(a + b)$ to factorize the expression further.

(b) Note that:

5 (J97/P1/Q21)

Questions are not shown in Preview

Question 5

Thinking Process

- (a) To express t in terms of $s \not \! F$ express t-2 in terms of s.
- (b) To express $\frac{4}{2x-1} \frac{3}{5x+6}$ as a single fraction \mathscr{F} write both fractions with (2x-1)(5x+6) as denominator and simplify the numerators of the fractions.

Solution

(a)
$$s = \frac{3}{t-2}$$
$$\Rightarrow s(t-2) = 3$$
$$\Rightarrow t-2 = \frac{3}{s}$$
$$\Rightarrow t = \frac{3}{s} + 2 = \frac{3+2s}{s}$$
 Ans.

(b)
$$\frac{4}{2x-1} - \frac{3}{5x+6}$$

$$= \frac{4(5x+6)}{(2x-1)(5x+6)} - \frac{3(2x-1)}{(2x-1)(5x+6)}$$

$$= \frac{(20x+24) - (6x-3)}{(2x-1)(5x+6)}$$

$$= \frac{14x+27}{(2x-1)(5x+6)}$$
 Ans.

6 (D97/P1/Q12)

Questions are not shown in Preview

Question 6

Thinking Process

- (a) To factorize $2\pi r^2 + 2\pi rh$ \mathscr{J} consider the common factor of $2\pi r^2$ and $2\pi rh$.
- (b) To factorize ac 3c + 2ab 6b By inspection or consider the common factor in ac 3c and 2ab 6b respectively.

Solution

- (a) $2\pi r$ is the common factor of $2\pi r^2$ and $2\pi rh$, $\therefore 2\pi r^2 + 2\pi rh = 2\pi r(r+h)$ **Ans.**
- (b) To factorize ac-3c+2ab-6b, consider the expressions ac-3c and 2ab-6b separately and attempt to find if common factor can be found in them

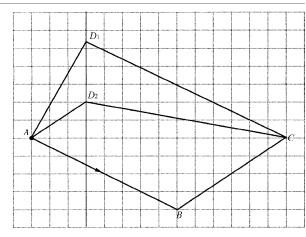
ac-3c has a common factor $c \Rightarrow ac-3c = c(a-3)$ 2ab-6b has a common factor $2b \Rightarrow 2ab-6b = 2b(a-3)$

Now,
$$ac-3c + 2ab-6b = c(a-3) + 2b(a-3)$$
 which has a common factor $(a-3)$.

$$\therefore ac - 3c + 2ab - 6b = (c + 2b)(a - 3)$$
$$= (a - 3)(2b + c)$$
 Ans.

Topic 18

Vectors in Two Dimensions



21 (D2004/P1/Q13)

Questions are not shown in Preview

Question 21

Thinking Process

- (a) Apply vector addition: $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$. (b) For \overrightarrow{ABCD} to be a trapezium, \overrightarrow{CD} must be // to \overrightarrow{AB} or AD must be // to BC.

Solution

(a)
$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = \begin{pmatrix} 8 \\ -4 \end{pmatrix} + \begin{pmatrix} 6 \\ 4 \end{pmatrix} = \begin{pmatrix} 14 \\ 0 \end{pmatrix}$$

(b)
$$h = 5\frac{1}{2}$$
 or 2.

22 (D2005/P2/Q11)

Questions are not shown in Preview

Question 22

Thinking Process

(a) (i)
$$\overrightarrow{DO} = \overrightarrow{OA}$$
.

(ii)
$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB}$$
.

(iii)
$$\overrightarrow{DB} = \overrightarrow{DO} + \overrightarrow{OB}$$
.

- (b) Since ABCDEF is a regular hexagon, OAB is an equilateral Δ . \therefore OB = OA = AB.
- (c) (i) (a) $\overrightarrow{AX} = \overrightarrow{OX} \overrightarrow{OA}$.
 - (b) $\overrightarrow{YX} = \overrightarrow{OX} \overrightarrow{OY}$.
 - (ii) Check if \overrightarrow{AX} is // to \overrightarrow{YX} . If it is, then A, X and Y are collinear.
- (d) $\overrightarrow{XZ} = \overrightarrow{OZ} \overrightarrow{OX}$.
- (e) Find XY, YZ and XZ.
- (f) $\triangle OAB$ is similar to $\triangle XYZ$.

$$\Rightarrow \left(\frac{AB}{YZ}\right)^2 = \frac{\text{area of } \triangle OAB}{\text{area of } \triangle XYZ}$$

Solution

- (a) (i) $\overrightarrow{DO} = \mathbf{a}$
 - (ii) $\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB}$ = $\mathbf{b} - \mathbf{a}$
 - (iii) $\overrightarrow{DB} = \overrightarrow{DO} + \overrightarrow{OB}$ = $\mathbf{b} + \mathbf{a}$
- (b) $|\mathbf{a}| = OA$ $|\mathbf{b}| = OB$ $|\mathbf{b} - \mathbf{a}| = AB$

OAB is an equilateral Δ since ABCDEF is a regular hexagon.

$$\therefore \quad |\mathbf{a}| = |\mathbf{b}| = |\mathbf{b} - \mathbf{a}|$$

- (c) (i) (a) $\overrightarrow{AX} = \overrightarrow{OX} \overrightarrow{OA}$ = $\mathbf{a} + \mathbf{b} - \mathbf{a}$
 - (b) $\overrightarrow{YX} = \overrightarrow{OX} \overrightarrow{OY}$ = $\mathbf{a} + \mathbf{b} - (\mathbf{a} - 2\mathbf{b})$
 - (ii) Y, A and X are collinear.
- (d) $\overrightarrow{XZ} = \overrightarrow{OZ} \overrightarrow{OX}$ = $\mathbf{b} - 2\mathbf{a} - (\mathbf{a} + \mathbf{b})$ = $-3\mathbf{a}$
- (e) $\overrightarrow{XZ} = -3\mathbf{a}$ $XZ = \begin{vmatrix} -3\mathbf{a} \end{vmatrix}$ $= 3|\mathbf{a}|$ $\overrightarrow{YZ} = \overrightarrow{OZ} - \overrightarrow{Y}$ $= \mathbf{b} - 2\mathbf{a} - (\mathbf{a} - 2\mathbf{b})$ $= 3\mathbf{b} - 3\mathbf{a}$ $YZ = \begin{vmatrix} 3\mathbf{b} - 3\mathbf{a} \end{vmatrix}$ $= 3|\mathbf{b} - \mathbf{a}|$

$$\overrightarrow{XY} = -3\mathbf{b}$$

$$XY = |-3\mathbf{b}|$$

$$= 3|\mathbf{b}|$$

Since $|\mathbf{a}| = |\mathbf{b}| = |\mathbf{b} - \mathbf{a}|$, $\therefore XYZ$ is equilateral. (shown)

(f)
$$\frac{\text{Area of } \triangle OAB}{\text{Area of } \triangle XYZ} = \left(\frac{1}{3}\right)^2 d$$
$$= \frac{1}{9}$$

23 (J2006/P2/Q11 b)

Questions are not shown in Preview

Question 23

Thinking Process

- (b) (i) $PR//PQ \Rightarrow$ gradients are equal.
 - (ii) $\overrightarrow{PU} = \overrightarrow{PQ} + \overrightarrow{QU}$.
 - (iii) $\overrightarrow{QU} = \frac{1}{2}\overrightarrow{QS}$. Find k.

Solution

- (b) (i) Since R lies on PQ, $\Rightarrow PR \# PQ$ \Rightarrow gradient of PR = gradient of PQ $\Rightarrow \frac{-6}{h} = \frac{-9}{3}$ $\Rightarrow -6 = -3h$ h = 2
 - (ii) $\overrightarrow{PU} = \overrightarrow{PQ} + \overrightarrow{QU}$ $= \begin{pmatrix} 3 \\ -9 \end{pmatrix} + \begin{pmatrix} 7 \\ 2 \end{pmatrix}$ $= \begin{pmatrix} 10 \\ -7 \end{pmatrix}$
 - (iii) Since U is the mid-point of QS,

$$\Rightarrow \overrightarrow{QU} = \frac{1}{2}\overrightarrow{QS}$$

$$\Rightarrow \binom{7}{2} = \frac{1}{2}(\overrightarrow{PS} - \overrightarrow{PQ})$$

$$\Rightarrow \binom{14}{4} = \binom{17}{k} - \binom{3}{-9}$$

$$\Rightarrow \binom{14}{4} = \binom{14}{k+9}$$

$$k+9 = 4$$

$$\therefore k = 4-9$$

$$= -5$$

24 (D2006/P1/Q12)

Questions are not shown in Preview

Question 24

Thinking Process

- (a) $\overrightarrow{BA} = \overrightarrow{OA} \overrightarrow{OB}$. $\overrightarrow{OB} = \overrightarrow{OC} + \overrightarrow{CB}$.
- (b) Show $\overrightarrow{OP} = k\overrightarrow{BA}$.
- (c) Ratio = 3:2.

Solution

(a)
$$\overrightarrow{OB} = \overrightarrow{OC} + \overrightarrow{CB}$$

= $2\mathbf{c} + \mathbf{a}$

$$\overrightarrow{BA} = \overrightarrow{OA} - \overrightarrow{OB}$$

$$= 4\mathbf{a} - 2\mathbf{c} - \mathbf{a}$$

$$= 3\mathbf{a} - 2\mathbf{c}$$

(b)
$$\overrightarrow{OP} = 2\mathbf{a} - \frac{4}{3}\mathbf{c}$$

= $\frac{2}{3}(3\mathbf{a} - 2\mathbf{c})$
= $\frac{2}{3}\overrightarrow{BA}$

Since $\overrightarrow{OP} = \frac{2}{3}\overrightarrow{BA}$, \overrightarrow{OP} is parallel to \overrightarrow{BA} .

(c)
$$\frac{\text{area of } \triangle OBA}{\text{area of } \triangle OPA} = \frac{3}{2}$$

0

PAPER 1

F means " before that, do this!"

Answer all questions.

Neither Electronic Calculators Nor Mathematical TablesMay Be Used In This Paper.

Topic: 1 Numbers

Question 1

Thinking Process

- (a) Recall BODMAS rules.(b) Multiply by 100.

Solution

- (a) $17 5 \times 3 + 1$ =17-15+1=3 Ans.
- (b) $0.82 \times 100 = \frac{82}{100} \times 100 = 82\%$ Ans.

Topic: 1 Numbers

Questions are not shown in Preview

Question 2

Thinking Process

- (a) Evaluate the given expression.
- (b) Take LCM and simplify.

Solution

- (a) $\frac{8}{9} \times \frac{3}{4} = \frac{2}{3}$ Ans.
- (b) $\frac{3}{4} \frac{2}{3}$ $=\frac{9-8}{12}=\frac{1}{12}$ Ans.

Topic: 1 Numbers

Questions are not shown in Preview

Question 3

Thinking Process

- (a) / Think of numbers between 10 and 100 whose cube roots are whole numbers.
- (b) / Recall, prime numbers are whole numbers that cannot be exactly divided by any number except 1 and themselves.

Solution

- (a) The two cube numbers are 27 and 64 Ans.
- (b) The two prime numbers are 31 and 37 Ans.

Topic: 4 Algebraic Expressions and Manipulations

Question 4

Thinking Process

- (a) Recall $a^2 b^2 = (a+b)(a-b)$
- (b) Apply the formula given in part (a).

Solution

- (a) $x^2 y^2 = (x + y)(x y)$ Ans.
- (b) $102^2 98^2$ =(102+98)(102-98)=(200)(4)=800 Ans.

November 2 0 0 9

PAPER 2

Section A [52 marks] *Answer all the questions in this section.*

1 Topic: 5

Questions are not shown in Preview

Question 1

Thinking Process

- (a) Write 8 in index form.
- (b) Expand and solve for p.
- (c) Make a common denominator on the left hand side and solve.
- (d) Apply quadratic formula.

Solution

(a)
$$2^{y} = 8$$
$$2^{y} = 2^{3}$$
$$\therefore y = 3 \text{ Ans.}$$

(b)
$$3p+4=8-2(p-3)$$

 $3p+4=8-2p+6$
 $3p+2p=8+6-4$
 $5p=10$
 $p=2$ **Ans.**

(c)
$$\frac{18}{q} - \frac{16}{q+2} = 1$$
$$\frac{18(q+2) - 16q}{q(q+2)} = 1$$
$$18q + 36 - 16q = q(q+2)$$
$$2q + 36 = q^2 + 2q$$
$$q^2 = 36$$
$$q = \pm 6 \quad \mathbf{Ans.}$$

(d)
$$5x^2 + x - 7 = 0$$

Applying quadratic formula,

$$x = \frac{-1 \pm \sqrt{(1)^2 - 4(5)(-7)}}{2(5)}$$

$$= \frac{-1 \pm \sqrt{141}}{10}$$

$$x = \frac{-1 + \sqrt{141}}{10} \quad \text{or} \quad x = \frac{-1 - \sqrt{141}}{10}$$

$$= 1.0874 \quad \text{or} \quad x = -1.2874$$

$$\therefore \quad x = 1.09 \quad \text{or} \quad -1.29 \quad \text{(to 2 dp)} \quad \mathbf{Ans.}$$

2 Topic: 9

Questions are not shown in Preview

Question 2

Thinking Process

- (a) (i) ABCD is a rectangle with AP = CR.
 - (ii) Prove that BQ = SD. Observe that triangles are congruent by SAS property.
 - (iii) PB is parallel to DR, \angle BPR = \angle DRP, and \angle BPQ = \angle DRS.
- (b) Note that PQ is parallel to SR.

Solution

(a) (i) Given that AB = DC and AP = RC

$$\therefore PB = AB - AP$$

$$= DC - RC$$

$$= RD \quad \mathbf{Shown.}$$

(ii) Given that, BC = AD and QC = AS

$$\Rightarrow BQ = BC - QC$$
$$= AD - AS$$
$$= DS$$

$$\therefore BQ = DS$$

from part (a) (i): PB = RD

also
$$P\widehat{B}Q = R\widehat{D}S = 90^{\circ}$$

$$\therefore \Delta PBQ \equiv \Delta RDS \text{ (SAS)}$$
Shown.

(iii) ABCD is a rectangle, therefore PB is parallel to DR.

⇒
$$B\widehat{P}R = D\widehat{R}P$$
 (alternate ∠s)
and $B\widehat{P}Q = D\widehat{R}S$ ($\Delta PBQ \equiv \Delta RDS$)
now,

$$B\widehat{P}Q + R\widehat{P}Q = B\widehat{P}R$$

$$R\widehat{P}Q = B\widehat{P}R - B\widehat{P}Q$$

$$= D\widehat{R}P - D\widehat{R}S$$

$$= P\widehat{R}S$$

$$\therefore R\widehat{P}Q = P\widehat{R}S \quad \textbf{Shown.}$$

- (b) From (a) (iii), $R\hat{P}Q = P\hat{R}S$
 - \Rightarrow PQ is parallel to SR
 - .. PQRS is a parallelogram. Ans.
- **3** Topic: 14

Questions are not shown in Preview

Question 3

Thinking Process

- (a) Apply $\sin \theta = \frac{\text{opp}}{\text{hyp}}$.
- (b) Apply $\sin \theta = \frac{\text{opp}}{\text{hyp}}$
- (c) (i) To find angle BMC & find angle MBA.
 - (ii) Apply $\sin M \hat{B} C = \frac{\text{opp}}{\text{hyp}}$

Solution

- (a) $\sin 15^{\circ} = \frac{d}{50}$ $d = \sin 15^{\circ} \times 50$ $= 12.941 \approx 12.9 \text{ m (3sf)}$ **Ans.**
- (b) In $\triangle AMB$,

$$\sin 15^{\circ} = \frac{10}{AB}$$

$$AB = \frac{10}{\sin 15^{\circ}}$$
= 38.637 \approx 38.6 m (3sf) **Ans.**

(c) (i) In $\triangle AMB$, $A\widehat{M}B = 90^{\circ}$

$$\therefore M\widehat{B}A = 90^{\circ} - 15^{\circ} = 75^{\circ}$$

Point C is nearest to point M,

$$\therefore M\widehat{C}B = 90^{\circ}$$

In $\triangle BMC$,

$$\widehat{BMC} = 90^{\circ} - \widehat{MBC}$$
$$= 90^{\circ} - 75^{\circ}$$
$$= 15^{\circ} \quad \mathbf{Ans.}$$

(ii) In $\triangle BMC$,

$$\sin M \hat{B}C = \frac{CM}{BM}$$

$$\sin 75^\circ = \frac{CM}{10}$$

$$CM = \sin 75^\circ \times 10$$

$$= 9.659 \approx 9.66 \text{ m (3sf)} \quad \mathbf{Ans.}$$