REDSPOT

MATHEMATICS

 (Paper 2-All Variants)(Syllabus 4024)

Appointed Agents \& Wholesalers in PAKISTAN:

BOOK LAND

Urdu Bazaar, Lahore. Tel: 042-37124656
NATIONAL BOOK SERVICE
Urdu Bazaar, Lahore. Tel: 042-37247310.

LAROSH BOOKS

(C) REDSPOT PUBUISMING

Urdu Bazaar Lahore. Tel: 042-37312126.
BURHANI BOOK CENTRE
New Urdu Bazar, Karachi, Tel: 021-32634718

MARYAM ACADEMY

Urdu Bazaar, Karachi, Tel: 0331-2425264

TARIQ BOOK TOWN

Samar Garden, Hydari North nazimzbad,
Karachi. Tel: 021-34555918, 36649425
(J) Tel $N_{o}:$ 042-35201010
(1) Mobile No: 0300-8447654
(1) E-Mail : info@redspot.com.pk

㘩 Website: www.redspot.com.pk
[1] Address: P.O. Box 5041, Model Town, Lahore, Pakistan.

All rights reserved. No part of this publication may be reproduced, copied or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher/ distributor.

‘O’ Level Classified Mathematics 4024 Paper 2 (P21 \& P22)

Topic 1 Numbers, Estimation, Indices
Topic 2 Ratio, Proportion, Limits of Accuracy, Time
Topic 3 Percentages
Topic 4 Money
Topic 5 Simple Interest \& Compound Interest
Topic 6 Algebraic Expressions \& Manipulation
Topic 7 Solutions of Equations
Topic 8 Linear \& Graphical Inequalities
Topic 9 Sequences and Patterns
Topic 10 Variation
Topic 11 Graphs in Practical Situations
Topic 12 Graphs of Functions
Topic 13 Function Notation
Topic 14 Coordinate Geometry
Topic 15 Geometrical Constructions
Topic 16 Similarity and Congruence
Topic 17 Symmetry
Topic 18 Angle Properties, Polygons
Topic 19 Circle Properties
Topic 20 Loci
Topic 21 Mensuration

TOPIC 7

Solutions of Equations

1. (a) In an athletics match Ben won the 100 m race in 9.98 s and Calvin won the 200 m race in 19.94 s .

What is the difference in their average speeds?
Give your answer in metres per second, correct to two decimal places.

Answer
m / s [2]
(b) Two cars each complete a journey of 120 km .

The first car is driven at an average speed of $x \mathrm{~km} / \mathrm{h}$.
The second car is driven at an average speed $3 \mathrm{~km} / \mathrm{h}$ faster than the first car.
The first car takes 6 minutes longer to complete the journey.
(i) Write down an equation in x and show that it simplifies to $x^{2}+3 x-3600=0$.
(ii) Solve the equation $x^{2}+3 x-3600=0$, giving each answer correct to one decimal place.

Answer $x=$ \qquad or \qquad
(iii) How many minutes does the first car take to travel the 120 km ?

Answer \qquad minutes
2. (a) Solve $3(x-5)=5 x-7$.

Answer $x=$
(b) Solve the simultaneous equations.

$$
\begin{gathered}
2 x-y=6 \\
4 x+3 y=-3
\end{gathered}
$$

Answer $x=$ \qquad
Answer $y=$
3. (a) Solve $\frac{2}{3-x}=1$.

Answer [1]
(b) Factorise
(i) $5 x+5 y$,
\qquad
(ii) $9 x^{2}-16$

Answer
(c) (i) Factorise $2 x^{2}+5 x-12$.

Answer
(ii) Use your answer to part (c)(i) to solve the equation $2 x^{2}+5 x-12=0$.

Answer $x=$ \qquad or
4. (a) Find the value of $\frac{a+\sqrt{a^{2}+b^{2}}}{a^{2}-2 a b}$ when $a=-4$ and $b=-3$.

Give your answer as a fraction.

Answer
(b) Expand the brackets and simplify $\left(3 x^{2}-1\right)(2 x+3)-x(9 x-2)$.

Answer
(c) (i) Factorise $9 x^{2}+5 x-4$.

Answer
(ii) Use your answer to part (c)(i) to solve the equation $9 x^{2}+5 x-4=0$.

Answer $x=$ \qquad or
(d) The sum of three consecutive integers is 84 .

Find these three integers.

Answer
5. (a) Express as a single fraction, in its simplest form, $\frac{7}{p+2}-\frac{4}{2 p-3}$.

> Answer
(b) The distance between London and York is 320 km .

A train takes x hours to travel between London and York.
(i) Write down an expression, in terms of x, for the average speed of the train.
(ii) A car takes $2 \frac{1}{2}$ hours longer than a train to travel between London and York. The average speed of the train is $80 \mathrm{~km} / \mathrm{h}$ greater than the average speed of the car. Form an equation in x and show that it simplifies to $2 x^{2}+5 x-20=0$.
(iii) Solve the equation $2 x^{2}+5 x-20=0$, giving your answers correct to 2 decimal places.

Answer $x=$ or
(iv) Hence find the average speed of the car correct to the nearest km / h.

Answer
6. (a) Solve the simultaneous equations.

$$
\begin{aligned}
& 2 x-3 y=14 \\
& 6 x+4 y=3
\end{aligned}
$$

\qquad
Answer $x=$

$$
\begin{equation*}
y= \tag{3}
\end{equation*}
$$

(b) Solve $x(x-4)=6+x$.
\qquad or

ANSWERS

Topic 7 - Solutions of Equations

1. (a) Speed diff. $=\frac{200}{19.94}-\frac{100}{9.98}=0.01 \mathrm{~m} / \mathrm{s}$
(b) (i) Time taken by lst car $=\frac{120}{x} \mathrm{~h}$

Time taken by 2 nd car $=\frac{120}{x+3} h$
$\therefore \quad \frac{120}{x}-\frac{120}{x+3}=\frac{6}{60}$
$\Rightarrow 120\left(\frac{x+3-x}{x(x+3)}\right)=\frac{1}{10}$
$\Rightarrow x^{2}+3 x-3600=0$
(ii) $x=\frac{-3 \pm \sqrt{(3)^{2}-4(1)(-3600)}}{2(1)}$

$$
\begin{gathered}
=\frac{-3 \pm \sqrt{14409}}{2} \\
\therefore x=58.5 \text { or }-61.5
\end{gathered}
$$

(iii) Time taken by $1 \mathrm{st} \mathrm{car}=\frac{120}{58.5} \mathrm{~h}$

$$
=123 \text { minutes } .
$$

2. (a) $3(x-5)=5 x-7$
$\Rightarrow 3 x-15=5 x-7 \Rightarrow x=-4$.
(b) $2 x-y=6 \ldots \ldots$ (1),$\quad 4 x+3 y=-3$

From (1): $y=2 x-6$ \qquad
Substitute (3) into (2) to obtain, $x=1.5$
Substitute $x=1.5$ into (3) to get, $y=-3$
3. (a) $\frac{2}{3-x}=1 \Rightarrow 2=3-x \Rightarrow x=1$
(b) (i) $5(x+y)$
(ii) $9 x^{2}-16=(3 x-4)(3 x+4)$
(c) (i) $2 x^{2}+5 x-12=(2 x-3)(x+4)$
(ii) Using (c)(i), $(2 x-3)(x+4)=0$ $\therefore x=\frac{3}{2}$ or -4
4. (a) $\frac{-4+\sqrt{(-4)^{2}+(-3)^{2}}}{(-4)^{2}-2(-4)(-3)}$
$=\frac{-4+\sqrt{16+9}}{16-24}=\frac{-4+\sqrt{25}}{-8}=-\frac{1}{8}$
(b) $\left(3 x^{2}-1\right)(2 x+3)-x(9 x-2)$
$=6 x^{3}+9 x^{2}-2 x-3-9 x^{2}+2 x$
$=6 x^{3}-3=3\left(2 x^{3}-1\right)$
(c) (i) $9 x^{2}+5 x-4=(x+1)(9 x-4)$
(ii) From (c) (i), $(x+1)(9 x-4)=0$

$$
\therefore \quad x=-1 \text { or } \frac{4}{9}
$$

(d) Let the integers be $x, x+1, x+2$
$x+(x+1)+(x+2)=84$
$\Rightarrow 3 x+3=84 \quad \Rightarrow \quad x=27$
\therefore the integers are $27,28,29$
5. (a) $\frac{7}{p+2}-\frac{4}{2 p-3}$
$=\frac{7(2 p-3)-4(p+2)}{(p+2)(2 p-3)}=\frac{10 p-29}{(p+2)(2 p-3)}$
(b) (i) Average speed $=\frac{320}{x} \mathrm{~km} / \mathrm{h}$.
(ii) Car av. speed $=\frac{320}{x+\frac{5}{2}}=\frac{640}{2 x+5} \mathrm{~km} / \mathrm{h}$

Now, $\frac{320}{x}-\frac{640}{2 x+5}=80$
$\Rightarrow 320\left(\frac{1}{x}-\frac{2}{2 x+5}\right)=80$
$\Rightarrow \frac{5}{x(2 x+5)}=\frac{1}{4}$
$\Rightarrow 2 x^{2}+5 x-20=0$
(iii) $2 x^{2}+5 x-20=0$. By quad. formula,

$$
\begin{aligned}
& x=\frac{-5 \pm \sqrt{(5)^{2}-4(2)(-20)}}{2(2)} \\
&=\frac{-5 \pm \sqrt{185}}{4} \\
& \therefore x=2.15 \text { or }-4.65
\end{aligned}
$$

TOPIC 12

Graphs of Functions

1. The variables x and y are connected by the equation $y=x+\frac{1}{x}$.

The table below shows some values of x and the corresponding values of y.
The values of y are correct to 2 decimal places where appropriate.

x	0.25	0.5	0.75	1	1.25	1.5	1.75	2
y	4.25	2.5	2.08	2	2.05	2.17	2.32	2.5

(a) On the grid, plot the points given in the table and join them with a smooth curve.

(b) By drawing a tangent, estimate the gradient of the curve when $x=0.75$.

Answer
(c) Let $\mathrm{f}(x)=x+\frac{1}{x}$.
(i) Given that $\mathrm{f}(a)=b$, find $\mathrm{f}(-a)$ in terms of b.

Answer
(ii) Hence, or otherwise, complete the table below for $y=x+\frac{1}{x}$.

x	-2	-1.75	-1.5	-1.25	-1	-0.75	-0.5	-0.25
y					-2			

(iii) On the grid, draw the graph of $y=x+\frac{1}{x}$ for $-2 \leq x \leq-0.25$.
(iv) Write down an estimate for the gradient of the curve when $x=-0.75$.

Answer
(d) (i) On the grid, draw the graph of the straight line $y=4-x$.
(ii) Write down the x-coordinate of each of the points where the graphs of $y=4-x$ and $y=x+\frac{1}{x}$ intersect.
(iii) Find the equation for which these x values are the solutions.

Give your equation in the form $A x^{2}+B x+C=0$.

Answer
2. The variables x and y are connected by the equation $y=\frac{x^{3}}{2}-3 x+1$.

Some corresponding values of x and y are given in the table below.

x	-3	-2	-1	0	1	2	3
y		3	3.5	1	-1.5	-1	

(a) Complete the table.
(b) On the grid below, plot the points from the table and join them with a smooth curve.

(c) Use your graph to solve the equation $\frac{x^{3}}{2}-3 x+1=0$.

Answer
(d) By drawing a tangent, find the gradient of the curve at the point $(-2,3)$.

> Answer
(e) The line $A B$ intersects the curve at point P.

The coordinates of point A are $(0,5)$. The coordinates of point B are $(2,-3)$.
(i) Find the equation of line $A B$.

> Answer
(ii) The x-coordinate of point P is a solution of the equation $\frac{x^{3}}{2}+C x+D=0$.

Find C and D.

$$
\begin{aligned}
\text { Answer } C & =\ldots \ldots \ldots
\end{aligned}
$$

3. Adil wants to fence off some land as an enclosure for his chickens. The enclosure will be a rectangle with an area of $50 \mathrm{~m}^{2}$.
(a) The enclosure is $x \mathrm{~m}$ long.
x
Show that the total length of fencing, $L \mathrm{~m}$, required for the enclosure is given by

$$
L=2 x+\frac{100}{x}
$$

(b) The table below shows some values of x and the corresponding values of L, correct to one decimal place where appropriate, for $L=2 x+\frac{100}{x}$.

x	2	4	6	8	10	12	14	16	18	20
L	54	33	28.7	28.5	30	32.3	35.1	38.3		

Complete the table.
(c) On the grid, next page,
draw a horizontal x-axis for $0 \leq x \leq 20$ using a scale of 1 cm to represent 2 m and a vertical L-axis for $0 \leq L \leq 60$ using a scale of 2 cm to represent 10 m .
On the grid, plot the points given in the table and join them with a smooth curve.
(d) Adil only has 40 m of fencing.

Use your graph to find the range of values of x that he can choose.

Answer \qquad $\leq x \leq$
(e) (i) Find the minimum length of fencing Adil could use for the enclosure.

Answer
(ii) Find the length and width of the enclosure using this minimum length of fencing. Give your answers correct to the nearest metre.

Answer Length $=$ \qquad m Width $=$ \qquad m [1]
(f) Suggest a suitable length and width for an enclosure of area $100 \mathrm{~m}^{2}$, that uses the minimum possible length of fencing.
\qquad m Width $=$ \qquad m [1]

ANSWERS

Topic 12 - Graphs of Functions

1. (a) Refer to graph
(b) Using $(1.5,1.5)$ and $(0.1,2.6), \quad$ Gradient $=\frac{2.6-1.5}{0.1-1.5}=-0.786$
(c) (i) $\mathrm{f}(a)=a+\frac{1}{a} \Rightarrow b=a+\frac{1}{a}$

$$
\mathrm{f}(-a)=-a-\frac{1}{a}=-b, \quad \therefore \mathrm{f}(-a)=-b
$$

(ii)

x	-2	-1.75	-1.5	-1.25	-1	-0.75	-0.5	-0.25
y	-2.5	-2.32	-2.17	-2.05	-2	-2.08	-2.5	-4.25

(iii) Refer to graph
(iv) Tangent at $x=-0.75$ would be parallel to the tangent drawn in (b), so gradient $=-0.786$
(d) (i) Refer to graph
(ii) $x=1.29$ and 1.71
(iii) Solving line and curve simultaneously,
$x+\frac{1}{x}=4-x$
$\Rightarrow x^{2}+1=4 x-x^{2}$
$\Rightarrow \quad 2 x^{2}-4 x+1=0$

2. (a) For $x=-3, \quad y=\frac{(-3)^{3}}{2}-3(-3)+1=-3.5$

For $x=3, \quad y=\frac{3^{3}}{2}-3(3)+1 .=5.5$
(b)
(-3,

(c) $\frac{x^{3}}{2}-3 x+1=0 \Rightarrow y=0$

From graph, $\quad x=-2.7,0.3,2.3$
(d) Taking points ($-3,0.8$) and ($-1,5.2$),

Gradient $=\frac{5.2-0.8}{-1+3}=2.2$
(e) (i) Grad. of $A B=\frac{-3-5}{2-0}=-4$

Equation is, $y=-4 x+5$
(ii) Solving simult. line $A B$ and curve,

$$
\begin{aligned}
& \frac{x^{3}}{2}-3 x+1=-4 x+5 \\
& \Rightarrow \frac{x^{3}}{2}+x-4=0, \quad \therefore C=1, \quad D=-4
\end{aligned}
$$

3. (a) Rectangle width, $w=\frac{50}{x}$

Total length, $L=2 x+2 w$
$\Rightarrow L=2 x+2\left(\frac{50}{x}\right)$
$\Rightarrow L=2 x+\frac{100}{x}$
(b) When $x=18, L=2(18)+\frac{100}{18}=41.56$

When $x=20, L=2(20)+\frac{100}{20}=45$
(c)

(d) From graph, $2.9 \leq x \leq 17.1$
(e) (i) From graph, min. length $=28.2 \mathrm{~m}$.
(ii) Length $=7 \mathrm{~m}$. width $=\frac{50}{7} \approx 7 \mathrm{~m}$
(f) For min. perimeter, the rectangle must be a square. So, length $=10 \mathrm{~m}$, width $=10 \mathrm{~m}$
4. (a) (i) For $x=-4, y=(-4)^{2}-2(-4)-8=16$

For $x=6, \quad y=(6)^{2}-2(6)-8=16$

TOPIC 19

Circle Properties

1. (a) $A B$ and $B C$ are chords of a circle centre O.
D is the midpoint of $A B$ and E is the midpoint of $B C$.
$A \widehat{B} C=108^{\circ}$.
Find $D \widehat{O} E$ giving your reasons.

Answer $D \widehat{O} E=$ because \qquad
\qquad
(b) A circle centre P and a circle centre Q intersect at R and S.
(i) Show that triangle $P R Q$ is congruent to triangle $P S Q$.

(ii) $R S$ and $P Q$ intersect at T.
(a) State the name of the special quadrilateral $P R Q S$.

Answer
(b) Find $P \widehat{T} R$

Answer
[1]
2. A, B, C, D and E are points on a circle with centre O.
$A D$ is a diameter of the circle and F is the point of intersection of $A D$ and $C E$.
$A \widehat{C} E=24^{\circ}$ and $A \widehat{D C}=72^{\circ}$.
(a) Find
(i) $A \widehat{D} E$,

Answer
[1]
(ii) $C \widehat{E} D$,

Answer
(iii) $C \widehat{F} D$,

> Answer
(iv) $\hat{A B C}$.
(b) Given that $D C=4.5 \mathrm{~cm}$, calculate
(i) the diameter of the circle,

Answer

cm [2]
(ii) $D E$.

Answer \qquad
3. A, B, C and D are points on the circumference of a circle, centre O.
The diameter $A C$ intersects $B D$ at E. $B \widehat{D} C=2 x^{\circ}$.
(i) Find an expression, in terms of x, for
(a) $B \widehat{A} C$,

Answer
(b) $B \widehat{O} C$,

Answer
(c) $O \widehat{C} B$.

> Answer
(ii) Calculate x when $O \widehat{B} E=x^{\circ}$ and $D \widehat{E} C=123^{\circ}$.
4. A, B, C and D are points on the circumference of the circle and $A C$ is a diameter.
$A F B E$ and $D C E$ are straight lines.
$D F$ is perpendicular to $A E$ and $C \widehat{D} F=67^{\circ}$.
(i) Find $A \widehat{E} D$.

$$
\begin{equation*}
\text { Answer } A \widehat{E} D= \tag{1}
\end{equation*}
$$

(ii) Find $C \widehat{B} E$, giving a reason for your answer.
\qquad because \qquad
\qquad
(iii) Explain why $D F$ is parallel to $C B$.

Answer \qquad
\qquad
5. Two circles intersect at L and M.
R and P are on the circumference of one circle. S and Q are on the circumference of the other circle.
$P L Q$ and $R L S$ are straight lines. $P \widehat{L} R=x^{\circ}$ and $M \hat{L} Q=y^{\circ}$.
(i) Complete the proof that $S \widehat{M Q}=x^{\circ}$.

Statement

Reason

$$
x^{\circ}=P \hat{L} R=S \hat{L} Q
$$

$$
S \hat{L} Q=S \widehat{M} Q=x^{\circ}
$$

ANSWERS

Topic 19-Circle Properties

1. (a) $D \widehat{O} E=180^{\circ}-108^{\circ}=72^{\circ}$

Because, D and E are midpoints of $A B$ and $B C$. The line from the center bisects the chord at 90°
(b) (i) $P R=P S \quad$ (radii of circle)
$Q R=Q S \quad$ (radii of circle) $P Q$ is common to both triangles
$\therefore \quad \triangle P R Q \equiv \triangle P S Q$
(ii) (a) PRQS is a Kite.
(b) $P \hat{T} R=90^{\circ}$
2. (a) (i) $A \widehat{D} E=24^{\circ}$ ($\angle \mathrm{s}$ in same segment)
(ii) $A C D$ is a right triangle, $A \widehat{C} D=90^{\circ}$
$\widehat{C A D}=90^{\circ}-72^{\circ}=18^{\circ}$
$\therefore C \widehat{E} D=C \widehat{A} D=18^{\circ}$
(iii) $C \widehat{F} D$ is exterior angle for $\triangle D E F$,
$\therefore C \widehat{F D}=24^{\circ}+18^{\circ}=42^{\circ}$
(iv) $A B C D$ is a cyclic quadrilateral
$\therefore A \widehat{B C}=180^{\circ}-72^{\circ}=108^{\circ}$
(b) (i) $A C D$ is a right angled triangle
$\cos 72^{\circ}=\frac{4.5}{A D} \Rightarrow A D=14.56 \mathrm{~cm}$
(ii) Using sine rule on $\triangle E C D$,
$\frac{D E}{\sin 66^{\circ}}=\frac{4.5}{\sin 18^{\circ}} \Rightarrow D E=13.3 \mathrm{~cm}$
3. (i) (a) $B \hat{A} C=2 x^{\circ} \quad(\angle \mathrm{s}$ in same segment)
(b) $B \widehat{O} C=2\left(2 x^{\circ}\right)=4 x^{\circ}$
(\angle at centre is $2 \times \angle$ at circumference).
(c) $A \widehat{B C}=90^{\circ} \quad(\angle$ in semi-circle $)$
$\therefore O \widehat{C} B=90^{\circ}-2 x^{\circ}$
(ii) $\triangle O A B$ is an isosceles triangle.
$A \widehat{B} E=2 x^{\circ}-x^{\circ}=x^{\circ}$
$\Rightarrow A \widehat{C} D=x^{\circ} \quad(\angle \mathrm{s}$ in same segment $)$
In $\triangle C D E$,
$2 x^{\circ}+x^{\circ}+123^{\circ}=180^{\circ} \Rightarrow x^{\circ}=19^{\circ}$
4. (i) Consider right angled $\Delta F \widehat{E} D$
$F \widehat{E} D=90^{\circ}-67^{\circ}=23^{\circ}$
$\therefore \quad A \widehat{E} D=23^{\circ}$
(ii) $C \widehat{B} E=90^{\circ}$ because $A \widehat{B} C=90^{\circ}$.

Angle $A B C$ is subtended by diameter $A C$.
(iii) $D \widehat{F} B=C \widehat{B} E=90^{\circ}$

Since the two corresponding angles are equal, therefore $D F$ and $C B$ are parallel.
5. (i) $x^{\circ}=P \hat{L} R=S \hat{L} Q$ (vertically opp. angles)
$S \hat{L} Q=S \widehat{M} Q=x^{\circ}(\angle \mathrm{s}$ in same segment $)$
(ii) $M \hat{L} P=180^{\circ}-y^{\circ} \quad(\angle \mathrm{s}$ on a straight line)
$P \widehat{R} M=180^{\circ}-\left(180^{\circ}-y^{\circ}\right)=y^{\circ}$
$\therefore P \widehat{R} M=y^{\circ}$
Reason: $P R M L$ is a cyclic quadrilateral.
So, opposite angles are supplementary.
(iii) Triangles $P R M$ and $Q S M$ are similar.

Reason: $R \widehat{M P}=S \widehat{M Q}=x^{\circ}$

$$
P \widehat{R} M=Q \widehat{S} M=y^{\circ}
$$

6. (i) $E \widehat{B} C=E \widehat{A} C=72^{\circ}(\angle \mathrm{s}$ in same segment $)$
(ii) In $\triangle A X E$,
$A \widehat{X} E=180^{\circ}-25^{\circ}-72^{\circ} \quad(\angle \operatorname{sum}$ of a $\Delta)$ $=83^{\circ}$
$\therefore C \widehat{X} B=A \widehat{X} E=83^{\circ}$
(iii) $A C D E$ is a cyclic quadrilateral,
$\therefore E \widehat{D} C=180^{\circ}-72^{\circ}=108^{\circ}$.
