REDSPOT

MATHEMATICS

 (Paper 1 - All Variants)(Syllabus 4024)

Appointed Agents \& Wholesalers in PAKISTAN:

BOOK LAND

Urdu Bazaar, Lahore. Tel: 042-37124656
NATIONAL BOOK SERVICE
Urdu Bazaar, Lahore. Tel: 042-37247310.

LAROSH BOOKS

(C) REDSPOT PUBUISMANG

Urdu Bazaar Lahore. Tel: 042-37312126.
BURHANI BOOK CENTRE
New Urdu Bazar, Karachi, Tel: 021-32634718

MARYAM ACADEMY

Urdu Bazaar, Karachi, Tel: 0331-2425264

TARIQ BOOK TOWN

Samar Garden, Hydari North nazimzbad,
Karachi. Tel: 021-34555918, 36649425
(J) Tel $N_{o}:$ 042-35201010
(1) Mobile No: 0300-8447654
(1) EMail : info@redspot.com.pk

䅘 Website: www.redspot.com.pk
[1] Address: P.O. Box 5041, Model Town, Lahore, Pakistan.

All rights reserved. No part of this publication may be reproduced, copied or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher/ distributor.

TOPIC 11

Solutions of Equations

1. Solve the simultaneous equations.

$$
\begin{aligned}
& 3 x+5 y=2 \\
& 2 x-3 y=14
\end{aligned}
$$

Answer $x=$

$y=$
2. $b=m(a-c)$
(a) Evaluate b when $m=5, a=8$ and $c=-3$.

$$
\text { Answer } b=
$$

(b) Rearrange the formula to make c the subject.

$$
\begin{equation*}
\text { Answer } c= \tag{2}
\end{equation*}
$$

3. (a) Solve $\frac{3 x}{4}+\frac{2 x-1}{2}=3$.

Answer $x=$
[2]
(b) Write as a single fraction in its simplest form

$$
\frac{5}{x+4}+\frac{2}{x-1} .
$$

4. Solve the equation $\frac{3 x+1}{2}-\frac{x}{3}=1$.

Answer $x=$
5. Solve the simultaneous equations.

$$
\begin{aligned}
4 x-3 y & =14 \\
2 x+y & =-3
\end{aligned}
$$

$$
\text { Answer } x=
$$

\qquad

$$
y=
$$

6. Make a the subject of the formula $y=\frac{a-4}{3-a}$.

$$
\begin{equation*}
\text { Answer } a= \tag{3}
\end{equation*}
$$

7. (a) Given that $x^{2}-14 x+40=(x-a)^{2}+b$, find the values of a and b.

$$
\text { Answer } \begin{aligned}
a & = \\
b & =
\end{aligned}
$$

(b) Solve the equation $3 x^{2}+7 x-6=0$ by factorisation.
\qquad or
8. In quadrilateral $A B C D$

```
angle }A=(2y+x\mp@subsup{)}{}{\circ
angle }B=(3y+x\mp@subsup{)}{}{\circ
angle C=(2y+10)}\mp@subsup{}{}{\circ
angle }D=(3x+5\mp@subsup{)}{}{\circ
```

(a) By finding the sum of the angles in the quadrilateral, show that $7 y+5 x=345$.
(b) Given that angle $A=90^{\circ}$ then $2 y+x=90$.

Solve the simultaneous equations to find x and y.

$$
\begin{aligned}
& 7 y+5 x=345 \\
& 2 y+x=90
\end{aligned}
$$

$$
\begin{align*}
\text { Answer } & x= \\
y & = \tag{3}
\end{align*}
$$

\qquad
(c) Find the size of the smallest angle in the quadrilateral.

Answer
[June/2014/P12/Q25]
9. Solve the simultaneous equations.

$$
\begin{aligned}
& 2 x-3 y=11 \\
& 5 x-4 y=24
\end{aligned}
$$

```
Answer x =
    y=
10. \(s=\frac{n}{2}(a+b)\)
(a) Evaluate \(s\) when \(n=200, a=3.6\) and \(b=5.7\).

\section*{ANSWERS}

\section*{Topic 11 - Solutions of Equations}
1. \(3 x+5 y=2 \Rightarrow x=\frac{2-5 y}{3}\)
\(2 x-3 y=14\)
substitute (1) into (2) to get, \(y=-2\)
substitute \(y=-2\) into (1) to get, \(x=4\)
2. (a) \(b=5(8+3)=55\)
(b) \(b=m(a-c)\)
\[
\Rightarrow \quad a-c=\frac{b}{m} \Rightarrow c=a-\frac{b}{m}
\]
3. (a) \(\frac{3 x}{4}+\frac{2 x-1}{2}=3\)
\[
\begin{aligned}
& \Rightarrow \frac{3 x+2(2 x-1)}{4}=3 \\
& \Rightarrow 7 x-2=12 \Rightarrow x=2
\end{aligned}
\]
(b) \(\frac{5}{x+4}+\frac{2}{x-1}\)
\(=\frac{5(x-1)+2(x+4)}{(x+4)(x-1)}=\frac{7 x+3}{(x+4)(x-1)}\)
4. \(\frac{3 x+1}{2}-\frac{x}{3}=1\)
\(\Rightarrow \frac{3(3 x+1)-2 x}{6}=1 \Rightarrow x=\frac{3}{7}\)
5. \(4 x-3 y=14\)
\(2 x+y=-3 \Rightarrow y=-2 x-3\)
Subst. (2) into (1) and obtain, \(x=\frac{1}{2}\)
Subst. \(x=\frac{1}{2}\) into (2), and obtain, \(y=-4\)
6. \(y=\frac{a-4}{3-a}\)
\(\Rightarrow 3 y-a y=a-4\)
\(\Rightarrow a(1+y)=3 y+4 \Rightarrow a=\frac{3 y+4}{1+y}\)
7. (a) \(x^{2}-14 x+40=(x-7)^{2}-9\)
\(\therefore a=7, b=-9\)
(b) \(3 x^{2}+7 x-6=0 \Rightarrow(x+3)(3 x-2)=0\)
\(\therefore x=-3\) or \(x=\frac{2}{3}\)
8. (a) \((2 y+x)+(3 y+x)+(2 y+10)+(3 x+5)\)
\[
=360
\]
\(\Rightarrow 7 y+5 x+15=360 \Rightarrow 7 y+5 x=345\)
(b) \(7 y+5 x=345\)
\(2 y+x=90 \Rightarrow x=90-2 y\)
Subst. (2) into (1), simplify to get, \(y=35\)
Subst. \(y=35\) into (2), to obtain, \(x=20\),
(c) Smallest angle \(=\) angle \(D\)
\[
\begin{equation*}
=3(20)+5=65^{\circ} \tag{2}
\end{equation*}
\]
9. \(2 x-3 y=11 \ldots \ldots(1), \quad 5 x-4 y=24\)
(1) \(\times 4: \quad 8 x-12 y=44\)
(2) \(\times 3: \quad 15 x-12 y=72\)
(3) \(-(4)\), gives, \(x=4\)

Subst. \(x=4\) into (1), gives, \(y=-1\)
10. (a) \(s=\frac{200}{2}(3.6+5.7)=930\)
(b) \(s=\frac{n}{2}(a+b)\)
\[
\Rightarrow a+b=\frac{2 s}{n} \Rightarrow b=\frac{2 s}{n}-a
\]
11. (a) \(c=\sqrt{8(3)-3(-4)}=\sqrt{36}=6\)
(b) \(c=\sqrt{8 a-3 b}\)
\[
\begin{equation*}
\Rightarrow c^{2}=8 a-3 b \Rightarrow b=\frac{8 a-c^{2}}{3} \tag{1}
\end{equation*}
\]
12. \(3 x+4 y=3\)
\(2 x-y=13 \Rightarrow y=2 x-13\)
Subst. (2) into (1),
\(3 x+4(2 x-13)=3 \Rightarrow x=5\)
Subst. \(x=5\) into (2), \(y=2(5)-13=-3\)
13. \(\frac{5 a-2}{3}=11 \Rightarrow 5 a-2=33 \Rightarrow a=\frac{35}{5}=7\)

\section*{TOPIC 27}

\section*{Mensuration}
1. The diagram shows the metal cover for a circular drain.
Water drains out through the shaded sections.
\(O\) is the centre of circles with radii \(1 \mathrm{~cm}, 2 \mathrm{~cm}\), \(3 \mathrm{~cm}, 4 \mathrm{~cm}\) and 5 cm .
The cover has rotational symmetry of order 6 and \(B \widehat{O} C=40^{\circ}\).
(a) Calculate the area of the shaded section \(A B C D\), giving your answer in terms of \(\pi\).


Answer \(\mathrm{cm}^{2}\) [2]
(b) The total area of the metal (unshaded) sections of the cover is \(\frac{55}{3} \pi \mathrm{~cm}^{2}\).
(i) Calculate the total area of the shaded sections, giving your answer in terms of \(\pi\).

\section*{Answer}
\(\qquad\) \(\mathrm{cm}^{2}\)
(ii) Calculate the fraction of the total area of the cover that is metal (unshaded). Give your answer in its simplest form.
2. The diagram shows part of an earring. It is in the shape of a sector of a circle of radius 3 cm and angle \(45^{\circ}\), from which a sector of radius 2 cm and angle \(45^{\circ}\) has been removed.
(a) Calculate the shaded area.

Give your answer in the form \(\frac{a \pi}{b}\), where \(a\) and \(b\) are integers and as small as possible.


Answer
\(\mathrm{cm}^{2}\) [2]
(b) The earring is cut from a sheet of silver.

The mass of \(1 \mathrm{~cm}^{2}\) of the silver sheet is 1.6 g .
By taking the value of \(\pi\) to be 3 , estimate the mass of the earring.
3. [Volume of a cone \(=\frac{1}{3} \pi r^{2} h\) ]

Cone 1 has radius \(2 x \mathrm{~cm}\) and height \(7 x \mathrm{~cm}\).
Cone 2 has radius \(x \mathrm{~cm}\) and height \(4 x \mathrm{~cm}\).
Find an expression, in terms of \(\pi\) and \(x\), for the difference in the volume of the two cones.
Give your answer in its simplest form.
\(\qquad\)
4. \(\left[\right.\) Volume of a sphere \(\left.=\frac{\mathbf{4}}{\mathbf{3}} \boldsymbol{\pi} \mathrm{r}^{\mathbf{3}}\right]\)

Three spheres, each of radius \(2 a \mathrm{~cm}\) are placed inside a cylinder of radius \(3 a \mathrm{~cm}\) and height \(12 a \mathrm{~cm}\).
Water is poured into the cylinder to fill it completely.

The volume of water is \(k \pi a^{3} \mathrm{~cm}^{3}\).
Find the value of \(k\).

[Nov/2013/P12/Q16]
5. The diagram shows a parallelogram with lengths as marked.
All the lengths are in centimetres.
(a) Calculate the perimeter of the parallelogram.


Answer
(b) Calculate the area of the parallelogram.

Answer
\(\mathrm{cm}^{2}\) [1]
6. In the triangle \(P Q R, P Q=5 \mathrm{~cm}, Q R=7 \mathrm{~cm}\) and \(P R=9 \mathrm{~cm}\).

Decide whether the triangle is acute angled or obtuse angled.
Show calculations to support your decision.
7. A thin piece of wire is shaped into a figure five as shown.
5.25

The shape has two straight sections of length 5.25 cm and 4.8 cm .
The curved part is the arc of the major sector of a circle, radius 3 cm .
The angle of the major sector is \(280^{\circ}\).
The total length of wire needed to make the figure is \((a+b \pi) \mathrm{cm}\).
Find the values of \(a\) and \(b\).
\[
\text { Answer } \begin{aligned}
a & = \\
b & =
\end{aligned}
\]
8. Shape \(A B C D E F G\) is made from two squares and a rightangled triangle.
\(A B=15 \mathrm{~cm}\) and \(B C=12 \mathrm{~cm}\).
(a) Find the length \(A G\).


Answer \(\qquad\) cm [2]
(b) Find the total area of the shape.

Answer \(\qquad\) \(\mathrm{cm}^{2}\) [2]
9. The diagram shows a scoop used for measuring washing powder.
The scoop is a prism. Its cross-section is a trapezium.
The trapezium has height 4 cm and parallel sides of length 7 cm and 11 cm . The width of the scoop is 5 cm .

(a) Show that the volume of the scoop is \(180 \mathrm{~cm}^{3}\).
(b) A scoop used in industry is geometrically similar to the scoop above. It has a volume of 22.5 litres.

Calculate the height of the industrial scoop.
10.


A hollow cone has a base radius 6 cm and slant height 10 cm .
The curved surface of the cone is cut, and opened out into the shape of a sector of a circle, with angle \(x^{\circ}\) and radius \(r \mathrm{~cm}\).
(a) Write down the value of \(r\).
\[
\text { Answer } r=
\]
(b) Calculate \(x\).
\[
\begin{equation*}
\text { Answer } x= \tag{2}
\end{equation*}
\]
11. [The volume of a sphere is \(\frac{4}{3} \pi r^{3}\) ]

20 spheres, each of radius 3 cm , have a total volume of \(k \pi \mathrm{~cm}^{3}\).
(a) Find the value of \(k\).

\section*{ANSWERS}

\section*{Topic 27-Mensuration}
1. (a) Area \(A B C D=\frac{40}{360}\left(\pi 4^{2}-\pi 3^{2}\right)=\frac{7}{9} \pi \mathrm{~cm}^{2}\)
(b) (i) Shaded sections area \(=\pi(5)^{2}-\frac{55}{3} \pi\)
\[
=\frac{20}{3} \pi \mathrm{~cm}^{2}
\]
(ii) Required fraction \(=\frac{\frac{55}{3} \pi}{\pi(5)^{2}}=\frac{11}{15}\)
2. (a) Shaded area \(=\) area of bigger sector
- area of smaller sector \(=\frac{45}{360}(\pi)(3)^{2}-\frac{45}{360}(\pi)(2)^{2}=\frac{5 \pi}{8} \mathrm{~cm}^{2}\).
(b) Area of earring \(=\frac{5(3)}{8}=\frac{15}{8} \mathrm{~cm}^{2}\)
\(\therefore\) Mass of the earringr \(=1.6 \times \frac{15}{8}=3 \mathrm{~g}\)
3. Difference in volume
\(=\frac{1}{3} \pi(2 x)^{2}(7 x)-\frac{1}{3} \pi(x)^{2}(4 x)=8 \pi x^{3}\)
4. Vol. of 3 spheres \(=3\left(\frac{4}{3} \pi(2 a)^{3}\right)=32 \pi a^{3}\)

Vol. of cylinder \(=\pi(3 a)^{2}(12 a)=108 \pi a^{3}\)
volume of water \(=\) vol. of cylinder - vol. of 3 spheres
\(\Rightarrow k \pi a^{3}=108 \pi a^{3}-32 \pi a^{3} \Rightarrow k=76\)
5. (a) Perimeter \(=2(9)+2(5.6)=29.2 \mathrm{~cm}\)
(b) Area \(=9(4.3)=38.7 \mathrm{~cm}^{2}\)
6. By Pythagoras, \(5^{2}+7^{2}=74\left(<9^{2}\right)\)
\(\therefore\) it is obtuse angled triangle.
7. Total length \(=\frac{280^{\circ}}{360^{\circ}}(2)(\pi)(3)+4.8+5.25\)
\[
=\frac{14}{3} \pi+10.05, \quad \therefore a=10.05, \quad b=\frac{14}{3}
\]
8. (a) Using pythagoras theorem on \(\triangle A E B\),
\(A E=\sqrt{15^{2}-12^{2}}=\sqrt{81}=9 \mathrm{~cm}\)
\(\therefore A G=A E=9 \mathrm{~cm}\)
(b) Total area \(=9^{2}+\frac{1}{2}(9)(12)+12^{2}=279 \mathrm{~cm}^{2}\)
9. (a) Volume \(=\left(\frac{1}{2}(4)(7+11)\right) \times 5=180 \mathrm{~cm}^{3}\)
(b) Using similar figures,
\(\frac{22.5 \times 1000}{180}=\left(\frac{h}{4}\right)^{3}\)
\(\Rightarrow\left(\frac{h}{4}\right)^{3}=125 \Rightarrow h=20 \mathrm{~cm}\)
10. (a) \(r=10 \mathrm{~cm}\)
(b) Circumference of base of cone
\(=\) arc length of sector
\(\Rightarrow 2 \pi(6)=\frac{x^{\circ}}{360}(2)(\pi)(10) \Rightarrow x^{\circ}=216^{\circ}\)
11. (a) Volume of 20 spheres \(=20\left(\frac{4}{3} \pi(3)^{3}\right)\)
\(\Rightarrow k \pi=20(36 \pi) \Rightarrow k=720\)
(b) Let \(h\) be the change in depth in water level.
\(\therefore 720 \pi=\pi(6)^{2} h \Rightarrow h=20 \mathrm{~cm}\)
12. Area of trapezium \(=\frac{1}{2} \times 12(b+4 b)\)
\[
\Rightarrow 120=\frac{1}{2} \times 12(5 b) \Rightarrow b=4
\]
13. (a) Vol. of hemisphere
\[
\begin{aligned}
& =\frac{1}{3}\left(\text { vol }_{\text {.cone }}+\text { vol }_{\text {.hemisphere }}\right) \\
\Rightarrow & \frac{1}{2}\left(\frac{4}{3} \pi r^{3}\right)=\frac{1}{3}\left(\frac{1}{3} \pi r^{2} h+\frac{1}{2}\left(\frac{4}{3} \pi r^{3}\right)\right) \\
\Rightarrow & \frac{2}{3} r^{3}=\frac{1}{9} r^{2} h+\frac{2}{9} r^{3} \Rightarrow h=4 r
\end{aligned}
\]
(b) \((r \sqrt{k})^{2}=h^{2}+r^{2}\)
\(\Rightarrow k=\frac{h^{2}+r^{2}}{r^{2}} \Rightarrow k=\frac{(4 r)^{2}+r^{2}}{r^{2}}=17\)

\section*{TOPIC 35}

\section*{Transformations}
1. The diagram shows triangle \(A\).

(a) Reflect triangle \(A\) in the line \(x=1\).

Label the image \(B\).
(b) Rotate triangle \(A\) through \(90^{\circ}\) clockwise about the point \((-1,3)\). Label the image \(C\).
2. The diagram shows triangles \(A\) and \(B\) and the point \(P(0,4)\).

(a) Describe fully the single transformation that maps triangle \(A\) onto triangle \(B\).

Answer \(\qquad\)
\(\qquad\)
(b) Triangle \(A\) is mapped onto triangle \(C\) by an enlargement, centre \(P\), scale factor \(-\frac{1}{2}\). On the diagram, draw triangle \(C\).
(c) Find the value of \(\frac{\text { area of triangle } A}{\text { area of triangle } C}\).

> Answer
3. The diagram shows triangles \(A\) and \(B\).
(a) Describe fully the single transformation that maps triangle \(A\) onto triangle \(B\).

Answer \(\qquad\)
\(\qquad\)
\(\qquad\)
(b) Triangle \(A\) is mapped onto triangle \(C\) by the transformation \(\mathbf{T}\)
\(\mathbf{T}\) is a rotation, centre the origin, through \(270^{\circ}\) clockwise.
(i) On the diagram, draw triangle \(C\).

(ii) Find the matrix that represents \(\mathbf{T}\).

Answer \((\square)\)
[Nov/2013/P12/Q20]
4. The diagram shows triangles \(A, B\) and \(C\).

(a) Triangle \(A\) can be mapped onto triangle \(B\) by a translation.

Write down the column vector for the translation.
\[
\begin{equation*}
\text { Answer }( \tag{1}
\end{equation*}
\]
(b) Find the matrix representing the transformation that maps triangle \(A\) onto triangle \(C\).
\[
\begin{equation*}
\text { Answer }(\quad) \tag{1}
\end{equation*}
\]
(c) Triangle \(A\) is mapped onto triangle \(D\) by an enlargement, scale factor 2 , centre \((5,0)\). Draw and label triangle \(D\).
5. \(A\) is the point \((1,7) . \quad B\) is the point \((6,7)\)

The line \(A B\) is mapped onto the line \(P Q\) by the translation \(\binom{0}{-5}\).
(a) Find the coordinates of \(Q\).
\(\qquad\)
\(\qquad\)

(b) What special type of quadrilateral is \(A B Q P\) ?

Answer
(c) Find the area of the quadrilateral \(A B Q P\).

Answer \(\qquad\) units \({ }^{2}\)
6.


The diagram shows triangles \(A\) and \(B\).
Triangle \(A\) is mapped onto triangle \(B\) by an enlargement.
Find the scale factor, and the centre, of this enlargement.
\[
\text { Answer scale factor }=
\]
\(\qquad\) centre \(=\) \(\qquad\)
7. \(A, B\) and \(C\) are three triangles.
\(\mathrm{T}_{1}, \mathrm{~T}_{2}\) and \(\mathrm{T}_{3}\) are three transformations such that \(\mathrm{T}_{1}(A)=B, \mathrm{~T}_{2}(A)=C\) and \(\mathrm{T}_{3}(C)=B\).
The vertices of triangle \(A\) are \((1,0),(0,1)\) and \((1,3)\).
The matrix that represents \(\mathrm{T}_{1}\) is \(\left(\begin{array}{ll}2 & 2 \\ 0 & 1\end{array}\right)\).
(a) Find \(\left(\begin{array}{ll}2 & 2 \\ 0 & 1\end{array}\right)\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 3\end{array}\right)\).
(b) The matrix that represents \(\mathrm{T}_{2}\) is \(\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)\)
(i) Find the inverse of \(\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)\).

Answer
(ii) The matrix that represents \(\mathrm{T}_{3}\) is \(\mathbf{M}\). Find \(M\).

Answer
8.

(a) Describe the single transformation that maps triangle \(A\) onto triangle \(B\).

Answer \(\qquad\)
\(\qquad\)
(b) Triangle \(A\) is mapped onto triangle \(C\) by an enlargement, centre \((0,2)\) and scale factor -2 .

Draw, and label, triangle \(C\) on the diagram.

\section*{Topic 35-Transformations}
1. (a) \& (b)

2. (a) \(\Delta A\) is mapped onto \(\Delta B\) by a reflection in the line \(x=-1\).
(b)

(c) \(\frac{\text { area of triangle } A}{\text { area of triangle } C}=\left(\frac{1}{-\frac{1}{2}}\right)^{2}=4\)
3. (a) \(\Delta A\) is mapped onto \(\Delta B\) by a reflection along the line \(y=x\).
(b) (i)

(ii) \(270^{\circ}\) clockwise rotation about origin is same as \(90^{\circ}\) anticlockwise rotation.
\(\therefore\) the matrix is: \(\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)\).
4. (a) Using \((2,1)\) of \(\Delta A\) and \((5,2)\) of \(\Delta B\). Column vector \(=\binom{5}{2}-\binom{2}{1}=\binom{3}{1}\).
(b) \(\Delta A\) is mapped onto \(\Delta C\) by a reflection in \(y\)-axis. So, the matrix is \(\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)\)
(c)

5. (a) \(\binom{6}{7}+\binom{0}{-5}=\binom{6}{2} . \quad \therefore Q(6,2)\)
(b) \(A B Q P\) is a square.
(c) Area \(=5^{2}=25\) unit \(^{2}\).
6. Scale factor \(=-2\). Centre \((0,2)\).
7. (a) \(\left(\begin{array}{ll}2 & 2 \\ 0 & 1\end{array}\right)\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 3\end{array}\right)=\left(\begin{array}{lll}2 & 2 & 8 \\ 0 & 1 & 3\end{array}\right)\)
(b) (i) Determinant \(=2 . \therefore\) Inverse \(=\frac{1}{2}\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)\)
(ii) \(\mathrm{T}_{1}(A)=B\), so from (a), \(B=\left(\begin{array}{lll}2 & 2 & 8 \\ 0 & 1 & 3\end{array}\right)\) \(\mathrm{T}_{2}(A)=C\)
\(\Rightarrow C=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 3\end{array}\right)=\left(\begin{array}{lll}2 & 0 & 2 \\ 0 & 1 & 3\end{array}\right)\)
Now, \(\mathrm{T}_{3}(C)=B \quad \Rightarrow \quad \mathbf{M}(C)=B\)
Using two points from \(\Delta B\) and \(\Delta C\),
\[
\begin{aligned}
& \mathbf{M}\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
2 & 2 \\
0 & 1
\end{array}\right) \\
\Rightarrow & \mathbf{M}=\left(\begin{array}{ll}
2 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)^{-1} \\
\Rightarrow & \mathbf{M}=\frac{1}{2}\left(\begin{array}{ll}
2 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) .
\end{aligned}
\]
8. (a) It is a \(90^{\circ}\) clockwise rotation about \((3,1)\).
(b)

9.
```

